
JavaScript: The
Definitive Guide, 4th
Edition
By David Flanagan

-Book Ripped by lilmeanman Enjoy! http://www.magic-html.comE -- Free Apps, E-Books, ETC

http://www.magic-html.com

Dedication

This book is dedicated to all who teach peace and
resist violence.

Preface
There have been many changes in the world of web programming with JavaScript
since the third edition of this book was published, including:

• Second and third editions of the ECMA-262 standard have been published,
updating the core JavaScript language. Conformant versions of Netscape's
JavaScript interpreter and Microsoft's JScript interpreter have been released.

• The source code for Netscape's JavaScript interpreters (one written in C and one
written in Java) has been released as open source and is available to anyone
who wants to embed a scripting language in his application.

• The World Wide Web Consortium (W3C) has published two versions (or levels)
of a Document Object Model (DOM) standard. Recent browsers support this
standard (to varying degrees) and allow client-side JavaScript to interact with
document content to produce sophisticated Dynamic HTML (DHTML) effects.
Support for other W3C standards, such as HTML 4, CSS1, and CSS2, has also
become widespread.

• The Mozilla organization, using source code originally contributed by Netscape,
has produced a good fifth-generation browser. At the time of this writing, the
Mozilla browser is not yet at the 1.0 release level, but the browser is mature
enough that Netscape has based its 6.0 and 6.1 browsers upon the Mozilla code
base.

• Microsoft's Internet Explorer has become the overwhelmingly dominant browser
on desktop systems. However, the Netscape/Mozilla browser remains relevant to
web developers, especially because of its superior support for web standards. In
addition, minor browsers such as Opera (http://www.opera.com) and Konquerer
(http://www.konqueror.org) should be seen as equally relevant.

• Web browsers (and JavaScript interpreters) are no longer confined to the desktop
but have migrated to PDAs and even cell phones.

In summary, the core JavaScript language has matured. It has been standardized and is
used in a wider variety of environments than it was previously. The collapse of
Netscape's market share has allowed the universe of desktop web browsers to expand,
and JavaScript-enabled web browsers have also become available on non-desktop
platforms. There has been a distinct, if not complete, move toward web standards. The
(partial) implementation of the DOM standard in recent browsers gives web developers a
long-awaited vendor-independent API to which they can code.

What's New in the Fourth Edition
This edition of JavaScript: The Definitive Guide has been thoroughly updated in light of
the changes I just described. Major new features include complete coverage of JavaScript
1.5 and the third edition of the ECMA-262 standard on which it is based, and complete
coverage of the Level 2 DOM standard.

Throughout the book, the focus has shifted from documenting particular JavaScript and
browser implementations (JavaScript 1.2, Netscape 4, Internet Explorer 5, etc.) to
documenting the standards upon which those implementations are (or ought to be) based.
Because of the proliferation of implementations, it is no longer practical for any one book
to attempt to document -- or for any one developer to attempt to understand -- every
feature, proprietary extension, quirk, and bug of every implementation. Focusing on the
specifications instead of the implementations makes this book easier to use and, if you
take the same approach, will make your JavaScript code more portable and maintainable.
You'll particularly notice the increased emphasis on standards in the new material on core
JavaScript and the DOM.

Another major change in this edition is that the reference section has been split into three
distinct parts. First, the core JavaScript material has been separated from the client-side
JavaScript material (Part IV) and placed in a section of its own (Part III). This division is
for the convenience of JavaScript programmers who are working with the language in an
environment other than a web browser and who are not interested in client-side
JavaScript.

Second, the new material documenting the W3C DOM has been placed in a section of its
own (Part V), separate from the existing client-side JavaScript material. The DOM
standard defines an API that is quite distinct from the "legacy" API of traditional client-
side JavaScript. Depending on the browser platforms they are targeting, developers
typically use one API or the other and usually do not need to switch back and forth.
Keeping these two APIs distinct also preserves the organization of the existing client-side
reference material, which is convenient for readers of the third edition who upgrade to
this edition.

In order to accommodate all the new material without making the book much, much
larger, I've gotten rid of reference pages for the trivial properties of objects. These
properties are already described once on the reference page for the object, and putting
another description in a reference page of its own was redundant and wasteful. Properties
that require substantial description, as well as all methods, still have reference pages of
their own. Furthermore, the design wizards at O'Reilly have created a new interior design
for the book that remains easy and pleasant to read but takes up less space.

Conventions Used in This Book
I use the following formatting conventions in this book:

Bold

Is occasionally used to refer to particular keys on a computer keyboard or to
portions of a user interface, such as the Back button or the Options menu.

Italic

Is used for emphasis and to signify the first use of a term. Italic is also used for
email addresses, web sites, FTP sites, file and directory names, and newsgroups.
Finally, italic is used in this book for the names of Java classes, to help keep Java
class names distinct from JavaScript names.

Constant width

Is used in all JavaScript code and HTML text listings, and generally for anything
that you would type literally when programming.

Constant width italic

Is used for the names of function arguments, and generally as a placeholder to
indicate an item that should be replaced with an actual value in your program.

Finding the Examples Online
The examples printed in this book are available for download from the book's web site.
Follow the Examples link from the book's catalog page:

http://www.oreilly.com/catalog/jscript4/

Acknowledgments
Brendan Eich of the Mozilla organization is the originator and chief innovator of
JavaScript. I, and many JavaScript developers, owe Brendan a tremendous debt of
gratitude for developing JavaScript and for taking the time out of his crazy schedule to
answer our questions and even solicit our input. Besides patiently answering my many
questions, Brendan also read and provided very helpful comments on the first and third
editions of this book.

This book has been blessed with top-notch technical reviewers, whose comments have
gone a long way toward making it a stronger, more accurate book. Waldemar Horwat at

Netscape reviewed the new material on JavaScript 1.5 in this fourth edition. The new
material on the W3C DOM was reviewed by Philippe Le Hegaret of the W3C; by Peter-
Paul Koch, Head of Client-Side Programming at the Dutch Internet consultancy and
creation company Netlinq Framfab (http://www.netlinqframfab.nl); by Dylan Schiemann
of SitePen (http://www.sitepen.com); and by independent web developer Jeff Yates. Two
of these reviewers maintain useful web sites about web design with the DOM. Peter-
Paul's site is at http://www.xs4all.nl/~ppk/js/. Jeff's site is http://www.pbwizard.com.
Although he was not a reviewer, Joseph Kesselman of IBM Research was very helpful in
answering my questions about the W3C DOM.

The third edition of the book was reviewed by Brendan Eich, Waldemar Horwat, and
Vidur Apparao at Netscape; Herman Venter at Microsoft; and two independent
JavaScript developers, Jay Hodges and Angelo Sirigos. Dan Shafer of CNET's
Builder.Com did some preliminary work on the third edition. Although his material was
not used in this edition, his ideas and general outline were quite helpful. Norris Boyd and
Scott Furman at Netscape also provided useful information for this edition, and Vidur
Apparao of Netscape and Scott Issacs of Microsoft each took the time to talk to me about
the forthcoming Document Object Model standard. Finally, Dr. Tankred Hirschmann
provided challenging insights into the intricacies of JavaScript 1.2.

The second edition benefited greatly from the help and comments of Nick Thompson and
Richard Yaker of Netscape; Dr. Shon Katzenberger, Larry Sullivan, and Dave C.
Mitchell at Microsoft; and Lynn Rollins of R&B Communications. The first edition was
reviewed by Neil Berkman of Bay Networks, and by Andrew Schulman and Terry Allen
of O'Reilly & Associates.

This book also gains strength from the diversity of editors it has had. Paula Ferguson is
the editor of this edition and of the third edition. She's given the book a thorough and
much-needed going over, making it easier to read and easier to understand. Frank
Willison edited the second edition, and Andrew Schulman edited the first.

Finally, my thanks, as always and for so many reasons, to Christie.

—David Flanagan, September 2001

Chapter 1. Introduction to JavaScript
JavaScript is a lightweight, interpreted programming language with object-oriented
capabilities. The general-purpose core of the language has been embedded in Netscape,
Internet Explorer, and other web browsers and embellished for web programming with
the addition of objects that represent the web browser window and its contents. This
client-side version of JavaScript allows executable content to be included in web pages --
it means that a web page need no longer be static HTML, but can include programs that
interact with the user, control the browser, and dynamically create HTML content.

Syntactically, the core JavaScript language resembles C, C++, and Java, with
programming constructs such as the if statement, the while loop, and the && operator.
The similarity ends with this syntactic resemblance, however. JavaScript is an untyped
language, which means that variables do not need to have a type specified. Objects in
JavaScript are more like Perl's associative arrays than they are like structures in C or
objects in C++ or Java. The object-oriented inheritance mechanism of JavaScript is like
those of the little-known languages Self and NewtonScript; it is quite different from
inheritance in C++ and Java. Like Perl, JavaScript is an interpreted language, and it
draws inspiration from Perl in a number of places, such as its regular expression and
array-handling features.

This chapter provides a quick overview of JavaScript; it explains what JavaScript can and
cannot do and exposes some myths about the language. It distinguishes the core
JavaScript language from embedded and extended versions of the language, such as the
client-side JavaScript that is embedded in web browsers and the server-side JavaScript
that is embedded in Netscape's web servers. (This book documents core and client-side
JavaScript.) This chapter also demonstrates real-world web programming with some
client-side JavaScript examples.

1.1 JavaScript Myths
JavaScript is the subject of a fair bit of misinformation and confusion. Before proceeding
any further with our exploration of JavaScript, it is important that we debunk some
common and persistent myths about the language.

1.1.1 JavaScript Is Not Java

One of the most common misconceptions about JavaScript is that it is a simplified
version of Java, the programming language from Sun Microsystems. Other than an
incomplete syntactic resemblance and the fact that both Java and JavaScript can provide
executable content in web browsers, the two languages are entirely unrelated. The
similarity of names is purely a marketing ploy (the language was originally called
LiveScript; its name was changed to JavaScript at the last minute).

JavaScript and Java do, however, make a good team. The two languages have different
sets of capabilities. JavaScript can control browser behavior and content but cannot draw
graphics or perform networking. Java has no control over the browser as a whole but can
do graphics, networking, and multithreading. Client-side JavaScript can interact with and
control Java applets embedded in a web page, and, in this sense, JavaScript really can
script Java (see Chapter 22 for details).

1.1.2 JavaScript Is Not Simple

JavaScript is touted as a scripting language instead of a programming language, the
implication being that scripting languages are simpler, that they are programming
languages for non-programmers. Indeed, JavaScript appears at first glance to be a fairly
simple language, perhaps of the same complexity as BASIC. JavaScript does have a
number of features designed to make it more forgiving and easier to use for new and
unsophisticated programmers. Non-programmers can use JavaScript for limited,
cookbook-style programming tasks.

Beneath its thin veneer of simplicity, however, JavaScript is a full-featured programming
language, as complex as any and more complex than some. Programmers who attempt to
use JavaScript for nontrivial tasks often find the process frustrating if they do not have a
solid understanding of the language. This book documents JavaScript comprehensively,
so you can develop a sophisticated understanding of the language.

1.2 Versions of JavaScript
JavaScript has evolved over the years, and Netscape has released several versions of the
language. Microsoft has released similar versions of the JavaScript language under the
name "JScript." And ECMA (http://www.ecma.ch) has published three versions of the
ECMA-262 standard that standardize the JavaScript language under the awkward name
"ECMAScript."

Table 1-1 lists these various versions and explains their key features and how they are
related to one another. In this book, I often use the name "JavaScript" to refer to any
implementation of the language, including Microsoft's JScript. When I'm specifically
referring to ECMAScript, I often use the terms "ECMA-262" or "ECMA."

Table 1-1. Versions of JavaScript

Version Description

JavaScript
1.0

The original version of the language. It was buggy and is now essentially
obsolete. Implemented by Netscape 2.

JavaScript
1.1

Introduced a true Array object; most serious bugs resolved. Implemented by
Netscape 3.

Table 1-1. Versions of JavaScript

Version Description

JavaScript
1.2

Introduced the switch statement, regular expressions, and a number of other
features. Almost compliant with ECMA v1, but has some incompatibilities.
Implemented by Netscape 4.

JavaScript
1.3

Fixed incompatibilities of JavaScript 1.2. Compliant with ECMA v1.
Implemented by Netscape 4.5.

JavaScript
1.4 Implemented only in Netscape server products.

JavaScript
1.5

Introduced exception handling. Compliant with ECMA v3. Implemented by
Mozilla and Netscape 6.

JScript 1.0 Roughly equivalent to JavaScript 1.0. Implemented by early releases of IE
3.

JScript 2.0 Roughly equivalent to JavaScript 1.1. Implemented by later releases of IE 3.

JScript 3.0 Roughly equivalent to JavaScript 1.3. Compliant with ECMA v1.
Implemented by IE 4.

JScript 4.0 Not implemented by any web browser.

JScript 5.0 Supported exception handling. Partially compliant with ECMA v3.
Implemented by IE 5.

JScript 5.5

Roughly equivalent to JavaScript 1.5. Fully compliant with ECMA v3.
Implemented by IE 5.5 and IE 6. (IE 6 actually implements JScript 5.6, but
5.6 is not different from 5.5 in any way that is relevant to client-side
JavaScript programmers.)

ECMA v1

The first standard version of the language. Standardized the basic features of
JavaScript 1.1 and added a few new features. Did not standardize the
switch statement or regular expression support. Conformant
implementations are JavaScript 1.3 and JScript 3.0.

ECMA v2 A maintenance release of the standard that included clarifications but
defined no new features.

ECMA v3 Standardized the switch statement, regular expressions, and exception
handling. Conformant implementations are JavaScript 1.5 and JScript 5.5.

1.3 Client-Side JavaScript
When a JavaScript interpreter is embedded in a web browser, the result is client-side
JavaScript. This is by far the most common variant of JavaScript; when most people refer

to JavaScript, they usually mean client-side JavaScript. This book documents client-side
JavaScript, along with the core JavaScript language that client-side JavaScript
incorporates.

We'll discuss client-side JavaScript and its capabilities in much more detail later in this
chapter. In brief, though, client-side JavaScript combines the scripting ability of a
JavaScript interpreter with the document object model (DOM) defined by a web browser.
These two distinct technologies combine in a synergistic way, so the result is greater than
the sum of its parts: client-side JavaScript enables executable content to be distributed
over the Web and is at the heart of a new generation of Dynamic HTML (DHTML)
documents.

Just as the ECMA-262 specification defined a standard version of the core JavaScript
language, the World Wide Web Consortium (W3C) has published a DOM specification
(or recommendation) that standardizes the features a browser must support in its DOM.
We'll learn much more about this standard in Chapter 17, Chapter 18, and Chapter 19.
Although the W3C DOM standard is not yet as well supported as it could be, it is
supported well enough that web developers can start writing JavaScript code that relies
on it.

Table 1-2 shows the core language version and DOM capabilities supported by various
browser versions from Netscape and Microsoft. Note that the versions of Internet
Explorer listed in the table refer to the Windows version of that browser. The capabilities
of Macintosh versions of IE often vary (sometimes significantly) from the same-
numbered versions for Windows. Also, bear in mind that IE allows the JScript interpreter
to be upgraded independently of the browser itself, so it is possible to encounter an
installation of IE that supports a version of the language greater than that shown here.

Table 1-2. Client-side JavaScript features by browser

Browser Language DOM capabilities

Netscape 2 JavaScript
1.0 Form manipulation

Netscape 3 JavaScript
1.1 Image rollovers

Netscape 4 JavaScript
1.2 DHTML with Layers

Netscape 4.5 JavaScript
1.3 DHTML with Layers

Netscape 6 /
Mozilla

JavaScript
1.5

Substantial support for W3C DOM standard; support for
Layers discontinued

IE 3 JScript Form manipulation

Table 1-2. Client-side JavaScript features by browser

Browser Language DOM capabilities

1.0/2.0

IE 4 JScript 3.0 Image rollovers; DHTML with document.all[]

IE 5 JScript 5.0 DHTML with document.all[]

IE 5.5 JScript 5.5 Partial support for W3C DOM standard

IE 6 JScript 5.5 Partial support for W3C DOM standard; lacks support
for W3C DOM event model

The differences and incompatibilities between Netscape's and Microsoft's client-side
versions of JavaScript are much greater than the differences between their respective
implementations of the core language. However, both browsers do agree upon a large
subset of client-side JavaScript features. For lack of better names, versions of client-side
JavaScript are sometimes referred to by the version of the core language on which they
are based. Thus, in client-side contexts the term "JavaScript 1.2" refers to the version of
client-side JavaScript supported by Netscape 4 and Internet Explorer 4. When I use core-
language version numbers to refer to client-side versions of JavaScript, I am referring to
the compatible subset of features supported by both Netscape and Internet Explorer.
When I discuss client-side features specific to one browser or the other, I refer to the
browser by name and version number.

Note that Netscape and Internet Explorer are not the only browsers that support client-
side JavaScript. For example, Opera (http://www.opera.com) supports client-side
JavaScript as well. However, since Netscape and Internet Explorer have the vast majority
of market share, they are the only browsers discussed explicitly in this book. Client-side
JavaScript implementations in other browsers should conform fairly closely to the
implementations in these two browsers.

Similarly, JavaScript is not the only programming language that can be embedded within
a web browser. For example, Internet Explorer supports a language known as VBScript, a
variant of Microsoft's Visual Basic language that provides many of the same features as
JavaScript but can be used only with Microsoft browsers. Also, the HTML 4.0
specification uses the Tcl programming language as an example of an embedded scripting
language in its discussion of the HTML <script> tag. While there are no mainstream
browsers that support Tcl for this purpose, there is no reason that a browser could not
easily support this language.

Previous editions of this book have covered Netscape browsers more thoroughly than
Microsoft browsers. The reason for this bias was that Netscape was the inventor of
JavaScript and (for a time, at least) held the dominant position in the web-browser

market. This bias toward Netscape has declined in each subsequent edition of the book,
and the current edition is heavily focused on standards, such as ECMAScript and the
W3C DOM, rather than on particular browsers. Nevertheless, readers may find that some
of the original bias toward Netscape comes through in the material that remains from
older editions.

1.4 JavaScript in Other Contexts
JavaScript is a general-purpose programming language; its use is not restricted to web
browsers. JavaScript was designed to be embedded within, and provide scripting
capabilities for, any application. From the earliest days, in fact, Netscape's web servers
included a JavaScript interpreter, so that server-side scripts could be written in
JavaScript. Similarly, Microsoft uses its JScript interpreter in its IIS web server and in its
Windows Scripting Host product, in addition to using it in Internet Explorer.

Both Netscape and Microsoft have made their JavaScript interpreters available to
companies and programmers who want to embed them in their applications. Netscape's
interpreter was released as open source and is now available through the Mozilla
organization (see http://www.mozilla.org/js/). Mozilla actually provides two different
versions of the JavaScript 1.5 interpreter. One is written in C and is called
"SpiderMonkey." The other is written in Java and, in a flattering reference to this book, is
called "Rhino."

We can expect to see more and more applications that use JavaScript as an embedded
scripting language.[1] If you are writing scripts for such an application, you'll find the first
half of this book, documenting the core language, to be useful. The web-browser specific
chapters, however, will probably not be applicable to your scripts.

[1] ActionScript, the scripting language available in Macromedia's Flash 5, is modeled after the ECMAScript standard, but it is not actually
JavaScript.

1.5 Client-Side JavaScript: Executable Content in
Web Pages
When a web browser is augmented with a JavaScript interpreter, it allows executable
content to be distributed over the Internet in the form of JavaScript scripts. Example 1-1
shows a simple JavaScript program, or script, embedded in a web page.

Example 1-1. A simple JavaScript program
<html>
<body>
<head><title>Factorials</title></head>
<script language="JavaScript">
document.write("<h2>Table of Factorials</h2>");
for(i = 1, fact = 1; i < 10; i++, fact *= i) {
 document.write(i + "! = " + fact);
 document.write("
");

}
</script>
</body>
</html>

When loaded into a JavaScript-enabled browser, this script produces the output shown in
Figure 1-1.

Figure 1-1. A web page generated with JavaScript

As you can see in this example, the <script> and </script> tags are used to embed
JavaScript code within an HTML file. We'll learn more about the <script> tag in
Chapter 12. The main feature of JavaScript demonstrated by this example is the use of the
document.write() method.[2] This method is used to dynamically output HTML text
that is parsed and displayed by the web browser; we'll encounter it many more times in
this book.

; you'll see it used throughout this book.

over
ntent of the HTML forms that appear in the browser. We'll

avaScript in more detail later in this chapter and in

vaScript can control not only the content of HTML documents, but also the behavior of
those documents. That is, a JavaScript program might respond in some way when you

document. JavaScript does this by
defining event handlers for the document -- pieces of JavaScript code that are executed
when a particula xample 1-2

[2] "Method" is the object-oriented term for function or procedure

Besides allowing control over the content of web pages, JavaScript allows control
the browser and over the co
learn about these capabilities of J
much more detail later in this book.

Ja

enter a value in an input field or click on an image in a

r event occurs, such as when the user clicks on a button. E
shows the definition of a simple HTML form that includes an event handler that is
executed in response to a button click.

Example 1-2. An HTML form with a JavaScript event handler defined
<form>
<input type="button"
 value="Click here"
 onclick="alert('You clicked the button');">
</form>

Figure 1-2 illustrates the result of clicking the button.

Figure 1-2. The JavaScript response to an event

The onclick attribute shown in Example 1-2 was originally a Netscape extension added
to HTML specifically for client-side JavaScript. Now, however, this and other event
handler attributes have been standardized in HTML Version 4.0. All JavaScript event
handlers are defined with HTML attributes like this one. The value of the

. In
 function. As you can see in

onclick
attribute is a string of JavaScript code to be executed when the user clicks the button
this case, the onclick event handler calls the alert()
Figure 1-2, alert() pops up a dialog box to display the specified message.

Example 1-1 and Example 1-2 highlight only the simplest features of client-side
cess to a

ient-

 JavaScript Features
rm arbitrary

les

JavaScript. The real power of JavaScript on the client side is that scripts have ac
hierarchy of objects that are based on the content of the web page. For example, cl
side JavaScript programs can access and manipulate each of the images that appear in a
document and can communicate and interact with Java applets and other objects
embedded within an HTML document. Once you have mastered the core JavaScript
language, the key to using JavaScript effectively in web pages is learning to use the
features of the DOM exposed by the browser.

1.6 Client-Side
Another possible use of JavaScript is for writing programs to perfo
computations. You can write simple scripts, for example, that compute Fibonacci
numbers, or search for primes. In the context of the Web and web browsers, however, a
more interesting application of the language might be a program that computed the sa

tax on an online order, based on information supplied by the user in an HTML form
mentioned earlier, the real power of JavaScript lies in the brow

. As
ser and document-based

objects that the language supports. To give you an idea of JavaScript's potential, the
 and

seen, allows you to write arbitrary HTML into a document as the document is being
a

ntirely.

support proprietary techniques for producing
Dynamic HTML effects that allow document content to be dynamically generated,

l the Browser

ow

pen
e) entirely new browser windows, which can have any specified size and any

combination of user controls. This allows you, for example, to open up multiple windows

nd
es

JavaScript does not define methods that allow you to create and manipulate frames
ically

 any desired frame
layout.

following sections list and explain the important capabilities of client-side JavaScript
the objects it supports.

1.6.1 Control Document Appearance and Content

The JavaScript Document object, through its write() method, which we have already

parsed by the browser. For example, you can include the current date and time in
document or display different content on different platforms.

You can also use the Document object to generate documents entirely from scratch.
Properties of the Document object allow you to specify colors for the document
background, the text, and the hypertext links within it. This amounts to the ability to
generate dynamic and conditional HTML documents, a technique that works particularly
well in multiframe documents. Indeed, in some cases dynamic generation of frame
content allows a JavaScript program to replace a traditional server-side script e

Internet Explorer 4 and Netscape 4

moved, and altered. IE 4 also supports a complete DOM that gives JavaScript access to
every single HTML element within a document. And IE 5.5 and Netscape 6 support the
W3C DOM standard (or at least key portions of it), which defines a standard, portable
way to access all of the elements and text within an HTML document and to position
them and modify their appearance by manipulating their Cascading Style Sheets (CSS)
style attributes. In these browsers, client-side JavaScript has complete power over
document content, which opens an unlimited world of scripting possibilities.

1.6.2 Contro

Several JavaScript objects allow control over the behavior of the browser. The Wind
object supports methods to pop up dialog boxes to display simple messages to the user
and get simple input from the user. This object also defines a method to create and o
(and clos

to give the user multiple views of your web site. New browser windows are also useful
for temporary display of generated HTML, and, when created without the menu bar a
other user controls, these windows can serve as dialog boxes for more complex messag
or user input.

directly within a browser window. However, the ability to generate HTML dynam
allows you to programmatically write the HTML tags that create

JavaScript also allows control over which web pages are displayed in the browser. The
Location object allows you to download and display the contents of any URL in any

ML
 it can

read and write the values of the
input elements in the forms in a document. For example, an online catalog might use an

put

der

Another common use of client-side JavaScript with forms is for validating form data
avaScript is able to perform all necessary error

checking of a user's input, no round trip to the server is required to detect and inform the
nput

e
!

st as

An important feature of JavaScript is the ability to define event handlers -- arbitrary
sually, these events are

initiated by the user, when, for example, she moves the mouse over a hypertext link,

ind

window or frame of the browser. The History object allows you to move forward and
back within the user's browsing history, simulating the action of the browser's Forward
and Back buttons.

Yet another method of the Window object allows JavaScript to display arbitrary
messages to the user in the status line of any browser window.

1.6.3 Interact with HTML Forms

Another important aspect of client-side JavaScript is its ability to interact with HT
forms. This capability is provided by the Form object and the form element objects
contain: Button, Checkbox, Hidden, Password, Radio, Reset, Select, Submit, Text, and
Textarea objects. These element objects allow you to

HTML form to allow the user to enter his order and could use JavaScript to read the in
from that form in order to compute the cost of the order, the sales tax, and the shipping
charge. JavaScript programs like this are, in fact, very common on the Web. We'll see a
program shortly that uses an HTML form and JavaScript to allow the user to compute
monthly payments on a home mortgage or other loan. JavaScript has an obvious
advantage over server-based scripts for applications like these: JavaScript code is
executed on the client, so the form's contents don't have to be sent to the server in or
for relatively simple computations to be performed.

before it is submitted. If client-side J

user of trivial input errors. Client-side JavaScript can also perform preprocessing of i
data, which can reduce the amount of data that must be transmitted to the server. In som
cases, client-side JavaScript can eliminate the need for scripts on the server altogether
(On the other hand, JavaScript and server-side scripting do work well together. For
example, a server-side program can dynamically create JavaScript code on the fly, ju
it dynamically creates HTML.)

1.6.4 Interact with the User

pieces of code to be executed when a particular event occurs. U

enters a value in a form, or clicks the Submit button in a form. This event-handling
capability is a crucial one, because programming with graphical interfaces, such as
HTML forms, inherently requires an event-driven model. JavaScript can trigger any k
of action in response to user events. Typical examples might be to display a special
message in the status line when the user positions the mouse over a hypertext link or to
pop up a confirmation dialog box when the user submits an important form.

1.6.5 Read and Write Client State with Cookies

A cookie is a small amount of state data stored permanently or temporarily by the client.
Cookies may be transmitted along with a web page by the server to the client, which

, has
already registered and obtained a password, or has expressed a preference about the color

 help you provide the state information that is missing
from the stateless HTTP protocol of the Web.

intended for use exclusively by server-side
scripts; although stored on the client, they could be read or written only by the server.
Jav c s
and can content based on the value of cookies.

1.6.6

In addi discussed, JavaScript has many other
cap il

•
 animation effects.

vaScript code can read and write the properties of these applets

• d at the start of this section, JavaScript can perform arbitrary

• th

 for

• y

ns into a JavaScript program. In

s

e their behavior based on browser or platform, so that

stores them locally. When the client later requests the same or a related web page, it
passes the relevant cookies back to the server, which can use their values to alter the
content it sends back to the client. Cookies allow a web page or web site to remember
things about the client -- for example, that the user has previously visited the site

and layout of web pages. Cookies

When cookies were invented, they were

aS ript changed this, because JavaScript programs can read and write cookie value
 dynamically generate document

Still More Features

tion to the features I have already
ab ities, including the following:

JavaScript can change the image displayed by an tag to produce image
rollover and

• JavaScript can interact with Java applets and other embedded objects that appear
in the browser. Ja
and objects and can also invoke any methods they define. This feature truly
allows JavaScript to script Java.
As mentione
computation. JavaScript has a floating-point data type, arithmetic operators that
work with it, and a full complement of standard floating-point mathematical
functions.
The JavaScript Date object simplifies the process of computing and working wi
dates and times.

• The Document object supports a property that specifies the last-modified date
the current document. You can use it to automatically display a timestamp on any
document.
JavaScript has a window.setTimeout() method that allows a block of arbitrar
JavaScript code to be executed some number of milliseconds in the future. This is
useful for building delays or repetitive actio
JavaScript 1.2, setTimeout() is augmented by another useful method called
setInterval().

• The Navigator object (named after the Netscape web browser, of course) ha
variables that specify the name and version of the browser that is running, as well
as variables that identify the platform on which it is running. These variables
allow scripts to customiz

they can take advantage of extra capabilities supported by some versions or work
around bugs that exist on some platforms.

JavaScript programs to scroll windows in the X and Y dimensions. In JavaScript

1.6

Client- that they are
con e a
limited

• JavaScript does not have any graphics capabilities, except for the powerful ability
cluding images, tables, frames, forms, fonts,

1.7 JavaScript Security

les

Because of the complexity of the web-browser environment, however, a number of
it was
f any

aining the code and then automatically send email in the visitor's
name, without the visitor's knowledge or approval. This, and a number of other security

ot

• In client-side JavaScript 1.2, the Screen object provides information about the size
and color-depth of the monitor on which the web browser is being displayed.

• As of JavaScript 1.1, the scroll() method of the Window object allows

1.2, this method is augmented by a host of others that allow browser windows to
be moved and resized.

.7 What JavaScript Can't Do

side JavaScript has an impressive list of capabilities. Note, however,
fin d to browser- and document-related tasks. Since client-side JavaScript is used in

 context, it does not have features that would be required for standalone languages:

to dynamically generate HTML (in
etc.) for the browser to display.

• For security reasons, client-side JavaScript does not allow the reading or writing
of files. Obviously, you wouldn't want to allow an untrusted program from any
random web site to run on your computer and rearrange your files!

• JavaScript does not support networking of any kind, except that it can cause the
browser to download arbitrary URLs and it can send the contents of HTML forms
across the network to server-side scripts and email addresses.

Any time that programs (such as JavaScript scripts, Visual Basic programs, or Microsoft
Word macros) are included within shared documents, particularly documents that are
transmitted over the Internet or by email, there is a potential for viruses or other
malicious programs. The designers of JavaScript were aware of these security issues and
took care not to give JavaScript programs the power to perform damaging acts. As
described previously, for example, client-side JavaScript programs cannot read local fi
or perform networking operations.

security problems did arise in early browser versions. In Netscape 2, for example,
possible to write JavaScript code that could automatically steal the email address o
visitor to a page cont

holes, have been fixed. Although there is no guarantee that other security holes will n
be found, most knowledgeable users are comfortable letting modern browsers run the
JavaScript code found in web pages. Chapter 21 contains a complete discussion of
security in client-side JavaScript.

1.8 Example: Computing Loan Payments with
JavaScript
Example 1-3 is rogram
computes the monthly payment on a home mo gage or other loan, given the amount of

e loan, the interest rate, and the repayment period. As you can see, the program consists
of an HTML form made interactive with JavaScript code. Figure 1-3

a listing of a complete, nontrivial JavaScript program. The p
rt

th
 shows what the

 HTML form looks like when displayed in a web browser. But the figure can only capture
a static snapshot of the program. The addition of JavaScript code makes it dynamic:
whenever the user changes the amount of the loan, the interest rate, or the number of
payments, the JavaScript code recomputes the monthly payment, the total of all
payments, and the total interest paid over the lifetime of the loan.

Figure 1-3. A JavaScript loan payment calculator

The first half of the example is an HTML form, nicely formatted using an HTML table.
s. TheNote that several of the form elements define onchange or onclick event handler

nt

ndler is
calculate().

equired
yments, and displays the results of these calculations using the

web browser triggers these event handlers when the user changes the input or clicks on
the Compute button displayed in the form. Note that in each case, the value of th

ent ha
e eve

handler attribute is a string of JavaScript code: calculate(). When the ev
red, it executes this code, which causes it to call the function trigge

The calculate() function is defined in the second half of the example, inside
ags. The function reads the user's input from the form, does the math r<script> t

to compute the loan pa
bottom three form elements.

Example 1-3 is simple, but it is worth taking the time to look at it carefully. You
nt, but studying this

k like, how event
 forms. Note that

 <!-- and --> markers and
 in lines that begin with the characters //.

/head>

he results it computes back to the user. The

table to improve their appearance.
 "loandata", and the fields within

iven names such as "interest" and "years". These
used in the JavaScript code that follows the form.

"onchange" or "onclick"
o be

ta">

></tr>

)</td>
f the loan (any currency):</td>

2"

</td>
>Annual percentage rate of interest:</td>

 <td><input type="text" name="interest" size="12"

me="years" size="12"
late();"></td>

shouldn't expect to understand all the JavaScript code at this poi
example should give you a good idea of what JavaScript programs loo

with HTMLhandlers work, and how JavaScript code can be integrated
 English) are included within HTML betweencomments (in

within JavaScript code

Example 1-3. Computing loan payments with JavaScript
<head><title>JavaScript Loan Calculator</title><
<body bgcolor="white">
<!--
 This is an HTML form that allows the user to enter data and allows
 JavaScript to display t
 form elements are embedded in a
 The form itself is given the name
 the form are g
 field names are
 Note that some of the form elements define
 event handlers. These specify strings of JavaScript code t
 executed when the user enters data or clicks on a button.
-->
<form name="loanda
 <table>
 <tr><td colspan="3">Enter Loan Information:</td
 <tr>
 <td>1
 <td>Amount o
 <td><input type="text" name="principal" size="1
 onchange="calculate();"></td>
 </tr>
 <tr>
 <td>2)
 <td

 onchange="calculate();"></td>
 </tr>
 <tr>
 <td>3)</td>
 <td>Repayment period in years:</td>
 <td><input type="text" na
 onchange="calcu
 </tr>
 <tr><td colspan="3">
 <input type="button" value="Compute" onclick="calculate();">
 </td></tr>
 <tr><td colspan="3">
 Payment Information:
 </td></tr>
 <tr>
 <td>4)</td>
 <td>Your monthly payment will be:</td>
 <td><input type="text" name="payment" size="12"></td>
 </tr>
 <tr>
 <td>5)</td>

 <td>Your total payment will be:</td>

d>
 <td><input type="text" name="totalinterest" size="12"></td>

that
calculate() function called by the event

n the form. The function refers to values in the form
de above.

n calculate() {
 // Get the user's input from the form. Assume it is all valid.
 // Convert interest from a percentage to a decimal, and convert

ly rate. Convert payment period in

 // to the number of monthly payments.
ncipal = document.loandata.principal.value;

nterest = document.loandata.interest.value / 100 / 12;
ayments = document.loandata.years.value * 12;

using esoteric math.

 var monthly = (principal*x*interest)/(x-1);

 (monthly != Number.NEGATIVE_INFINITY)) {

 document.loandata.payment.value = round(monthly);
 document.loandata.total.value = round(monthly * payments);

 }
 //
 //
 el

 document.loandata.totalinterest.value = "";
 }

 <td><input type="text" name="total" size="12"></td>
 </tr>
 <tr>
 <td>6)</td>
 <td>Your total interest payments will be:</t

 </tr>
 </table>
</form>

<!--
 This is the JavaScript program that makes the example work. Note
 this script defines the
 handlers i
 fields using the names defined in the HTML co
-->
<script language="JavaScript">
functio

from
 // an annual rate to a month
years

 var pri
 var i
 var p

 // Now compute the monthly payment figure,
 var x = Math.pow(1 + interest, payments);

 // Check that the result is a finite number. If so, display the
results.
 if (!isNaN(monthly) &&
 (monthly != Number.POSITIVE_INFINITY) &&

 document.loandata.totalinterest.value =
 round((monthly * payments) - principal);

 Otherwise, the user's input was probably invalid, so don't
 display anything.
se {

 document.loandata.payment.value = "";
 document.loandata.total.value = "";

}

// This simple method rounds a number to two decimal places.
function round(x) {
 return Math.round(x*100)/100;
}

</s i
</body
</h l

1.9 U
The s

cr pt>
>

tm >

sing the Rest of This Book
 re t of this book is in five parts. Part I, which immediately follows this chapter,

nts the core JavaScript language. docume Chapter 2 through Chapter 6 begin this section
wit o u
need to

• Chapter 2

h s me bland but necessary reading -- these chapters cover the basic information yo
 understand when learning a new programming language:

 explains the basic structure of the language.
• Chapter 3 documents the data types supported by JavaScript.
• Chapter 4 covers variables, variable scope, and related topics.
• Chapter 5 explains expressions in JavaScript and documents each of the operators

supported by JavaScript. Because JavaScript syntax is modeled on Java, which is,
in turn, modeled on C and C++, experienced C, C++, or Java programmers can

• Chapter 6

skim much of this chapter.
 describes the syntax and usage of each of the JavaScript statements.

The ex r the
core of t
already ar to you even if you already know C or Java. These chapters must be
stud d

Again, experienced C, C++, and Java programmers can skim some, but not all, of
this chapter.

 n t five chapters of this first section become more interesting. They still cove
 the JavaScript language, but they document parts of the language that will no
 be famili

ie carefully if you want to really understand JavaScript:

• Chapter 7 documents how functions are defined, invoked, and manipulated in
JavaScript.

• Chapter 8 explains objects, the most important JavaScript data type. This chapter
an

•

discusses object-oriented programming in JavaScript and explains how you c
define your own classes of objects in JavaScript.
Chapter 9 describes the creation and use of arrays in JavaScript.

• Chapter 10 explains how to use regular expressions in JavaScript to perfor
pattern-matching and search-and-replace operations.

m

• Chapter 11 covers advanced topics that have not been covered elsewhere. You
can skip this chapter the first time through the book, but the material it contains is

Part II

important to understand if you want to become a JavaScript expert.

browse rt of client-side JavaScript and provide detailed
exa l wser will
rely he

Her

explains client-side JavaScript. The chapters in this part document the web-
r objects that are at the hea

mp es of their use. Any interesting JavaScript program running in a web bro
avily on features specific to the client side.

e's what you'll find in Part II:

• Chapter 12 explains the integration of JavaScript with web browsers. It discusses
the web browser as a programming environment and explains the various ways in
which JavaScript is integrated into web pages for execution on the client side.

• Chapter 13 documents the most central and important object of client-side
JavaScript, the Window object, as well as several important window-related
objects.

• Chapter 14 explains the Document object and related objects that expose the
contents of an HTML document to JavaScript code.

• Chapter 15 documents the Form object, which represents HTML forms. It also
jects that appear within HTML forms and

ing using forms.
documents the various form element ob
shows examples of JavaScript programm

• Chapter 16 illustrates the use of cookies to save state in web programming.
• Chapter 17 explains the core pieces of the W3C DOM standard and shows how a

JavaScript script can access any element of an HTML document.
• Chapter 18 explains the portions of the W3C DOM standard that allow a

JavaScript program to manipulate the style, appearance, and position of the
elements within an HTML document. This chapter shows how you can create
many DHTML effects with CSS properties.

• Chapter 19 covers JavaScript events and event handlers, which are central to all
JavaScript programs that interact with the user. This chapter covers the traditional
event model, the W3C DOM standard event model, and the Internet Explorer
proprietary event model.

• Chapter 20 explores the important issue of compatibility in JavaScript
avaScript programs

rs.
programming and discusses techniques you can use to write J
that run correctly (or fail gracefully) on a wide variety of web browse

• Chapter 21 enumerates the security restrictions built into client-side JavaScript
r them.

ter 22
and explains the rationale fo

• Chap explains how you can use JavaScript to communicate with and control
pplets. It also covers how you can do the reverse -- invoke JavaScript code

from Java applets.
Java a

Part III, Part IV, and Part V are reference sections that document the objects defined by
the core JavaScript language, the objects defined in traditional client-side JavaScript
programming, and the objects defined by the new W3C DOM standard, respectively.

1.10 Exploring JavaScript
 to write programs with it. As you

ad through this book, I encourage you to try out JavaScript features as you learn about

simple scripts. One of the nice
things about client-side JavaScript is that anyone with a web browser and a simple text

xample

The way to really learn a new programming language is
re
them. There are a number of techniques that make it easy to experiment with JavaScript.

The most obvious way to explore JavaScript is to write

editor has a complete development environment; there is no need to buy or download
special-purpose software in order to begin writing JavaScript scripts. We saw an e

that computed factorials at the beginning of this chapter. Suppose you wanted to modif
it as follows to display Fibonacci numbers instead:

<script>
document.write("<h2>Table of Fibonacci Numbers</h2>");
for (i=0, j=1, k=0, fib =0; i<50; i++, fib=j+k, j=k, k=fib){
 document.write("Fibonacci (" + i + ") = " + fib);
 document.write("
");

y

}

ut the
n simply

file:
e code uses the document.write() method to display its HTML output, so that you

can see the results of its computations. This is an important technique for experimenting

d>, and <body>

other by semicolons). When the
browser loads such a URL, it executes the JavaScript code. The value of the last

 this string is displayed by the web
browser as its new document. For example, you might type the following JavaScript

RLs into the Location field of your web browser to test your understanding of some of
avaScript's operators and statements:

avascript:5%2
avascript:x = 3; (x < 5)? "x is less": "x is greater"
avascript:d = new Date(); typeof d;
avascript:for(i=0,j=1,k=0,fib=1; i<10; i++,fib=j+k,k=j,j=fib)
lert(fib);
avascript:s=""; for(i in document) s+=i+":"+document[i]+"\n";
lert(s);

hile exploring JavaScript, you'll probably write code that doesn't work as you expect it
 and want to debug it. The basic debugging technique for JavaScript is like that in many

ther languages: insert statements into your code to print out the values of relevant
ariables so that you can try to figure out what is actually happening. As we've seen, you

</script>

This code may be convoluted (and don't worry if you don't yet understand it), b
point is that when you want to experiment with short programs like this, you ca
type them up and try them out in your web browser using a local URL. Note that
th

with JavaScript. As an alternative, you can also use the alert() method to display
plain-text output in a dialog box:

alert("Fibonacci (" + i + ") = " + fib);

Note also that for simple JavaScript experiments like this, you can usually omit the
<html>, <hea tags in your HTML file.

For even simpler experiments with JavaScript, you can sometimes use the javascript:
URL pseudoprotocol to evaluate a JavaScript expression and return the result. A
JavaScript URL consists of the javascript: protocol specifier followed by arbitrary
JavaScript code (with statements separated from one an

expression in such a URL is converted to a string, and

U
J

j
j
j
j
a
j
a

W
to
o
v

can sometimes use the document.write() method to do this. This method doesn't work
om within event handlers, however, and has some other shortcomings as well, so it's
ften easier to use the alert() function to display debugging messages in a separate
ialog box.

he for/in loop (described in Chapter 6

fr
o
d

T) is also useful for debugging. You can use it,
long with the alert() method, to write a function that displays a list of the names and
alues of all properties of an object, for example. This kind of function can be handy
hen exploring the language or trying to debug code.

ood luck with JavaScript, and have fun exploring!

a
v
w

G

Part I: Core JavaScript

his part of the book, Chapter 2T through Chapter 11, documents the core JavaScript
nguage as it is used in web browsers, web servers, and other embedded JavaScript
plementations. This part is meant to be a JavaScript language reference. After you read

rough it once to learn the language, you may find yourself referring back to it to refresh
our memory about some of the trickier points of JavaScript.

• Chapter 2

la
im
th
y

• Chapter 3
• Chapter 4
• Chapter 5
• Chapter 6
• Chapter 7
• Chapter 8
• Chapter 9
• Chapter 10
• Chapter 11

Chapter 2. Lexical Structure
The lexical structure of a programming language is the set of elementary rules tha
specifies how you write programs in that language. It is the lowest-level syntax of a
language; it specifies such things as what variable names look like, what characters are
used for comments, and how one program statement is separated from the next. This
short chapter documents the lexical structure of JavaScri

t

pt.

hich is

nt feature for in portant for
programmers who do not speak English.

ext

d
acters a antities may be disconcerted to know that JavaScript

represents each character using 2 bytes, but this fact is actually transparent to the

 in
erals -- all other parts of an ECMAScript v1 program are

restricted to the ASCII character set. Versions of JavaScript that predate ECMAScript

bles,

 four distinct
es.

hile

 typed in any case in HTML, in JavaScript they

2.1 Character Set
JavaScript programs are written using the Unicode character set. Unlike the 7-bit ASCII
encoding, which is useful only for English, and the 8-bit ISO Latin-1 encoding, w
useful only for English and major Western European languages, the 16-bit Unicode
encoding can represent virtually every written language in common use on the planet.
This is an importa ternationalization and is particularly im

American and other English-speaking programmers typically write programs using a t
editor that supports only the ASCII or Latin-1 character encodings, and thus they don't
have easy access to the full Unicode character set. This is not a problem, however,
because both the ASCII and Latin-1 encodings are subsets of Unicode, so any JavaScript
program written using those character sets is perfectly valid. Programmers who are use
to thinking of char s 8-bit qu

programmer and can simply be ignored.

Although the ECMAScript v3 standard allows Unicode characters anywhere in a
JavaScript program, Versions 1 and 2 of the standard allow Unicode characters only
comments and quoted string lit

standardization typically do not support Unicode at all.

2.2 Case Sensitivity
JavaScript is a case-sensitive language. This means that language keywords, varia
function names, and any other identifiers must always be typed with a consistent
capitalization of letters. The while keyword, for example, must be typed "while", not
"While" or "WHILE". Similarly, online, Online, OnLine, and ONLINE are
variable nam

Note, however, that HTML is not case-sensitive. Because of its close association with
client-side JavaScript, this difference can be confusing. Many JavaScript objects and
properties have the same names as the HTML tags and attributes they represent. W
these tags and attribute names can be

typically must be all lowercase. For example,
is commonly specified as onClick in HTML

 the HTML onclick event handler attribute
, but it must be referred to as onclick in

cape, however, so in Internet Explorer 4 and later, client-side objects and
s are case-sensitive.

2.3 Whitespace and Line Breaks
 spaces, tabs, and newlines that appear between tokens in programs,
re part of string or regular expression literals. A token is a keyword,

ariable name, number, function name, or some other entity in which you would

12 3 parate tokens (and constitutes a syntax error, incidentally).

s

2.4 Optional Semicolons
tatements in JavaScript are generally followed by semicolons (;), just as they are

 C, C++, and Java. The semicolon serves to separate statements from each other. In
mit the semicolon if each of your statements is placed on
 following code could be written without semicolons:

the first semicolon is required:

Script theoretically allows line breaks between any two tokens, the fact
t automatically inserts semicolons for you causes some exceptions to this

JavaScript code.

While core JavaScript is entirely and exclusively case-sensitive, exceptions to this rule
are allowed in client-side JavaScript. In Internet Explorer 3, for example, all client-side
objects and properties were case-insensitive. This caused problematic incompatibilities
with Nets
propertie

JavaScript ignores
xcept those that ae

v
obviously not want to insert a space or a line break. If you place a space, tab, or newline
within a token, you break it up into two tokens -- thus, 123 is a single numeric token, but

 is two se

Because you can use spaces, tabs, and newlines freely in your programs (except in
strings, regular expressions, and tokens), you are free to format and indent your program
in a neat and consistent way that makes the code easy to read and understand. Note,
however, that there is one minor restriction on the placement of line breaks; it is
described in the following section.

S
in

imple s

JavaScript, however, you may o
a separate line. For example, the

a = 3;
 = 4;

b

But when formatted as follows,

a

 = 3; b = 4;

Omitting semicolons is not a good programming practice; you should get in the habit of
using them.

Although Java
hat JavaScript

rule. Loosely, if you break a line of code in such a way that the line before the break
appears to be a complete statement, JavaScript may think you omitted the semicolon an
insert one for you, altering your meaning. Some places you should look out for this ar
with the

d
e

eturn, break, and continue statements (which are described in Chapter 6r).
For example, consider the following:

true;

true;

atch out for -- this code does not cause a syntax error and will fail
in a nonobvious way. A similar problem occurs if you write:

break

 keyword, causing a syntax error when it
+ and -- postfix operators (see

return

JavaScript assumes you meant:

return;

However, you probably meant:

retur

n true;

This is something to w

outerloop;

JavaScript inserts a semicolon after the break
tries to interpret the next line. For similar reasons, the +
Chapter 5) must always appear on the same line as the expressions to which they
applied.

 are

2.5 Comments
 Java, supports both C++ and C-style comments. Any text between a //

and the end of a line is treated as a comment and is ignored by JavaScript. Any text
 comment. These C-style comments
 following lines of code are all legal

vaScript comments:

ere is another comment.
/*

JavaScript, like

between the characters and is also treated as a/* */
may span multiple lines but may not be nested. The
Ja

// This is a single-line comment.
/* This is also a comment */ // and h

 * This is yet another comment.
 * It has multiple lines.
 */

2.6 Literals
A literal is a data value that appears directly in a program. The following are all literals:

12 // The number twelve
1.2 // The number one point two
"hello world" // A string of text
'Hi' // Another string
true // A boolean value
false // The other bool

ean value
/javascript/gi // A "regular expression" literal (for pattern

t

pressions that serve as array and object literals are also supported.
ple:

 x:1, y:2 } // An object initializer
[1,2,3,4,5] // An array initializer

matching)
null // Absence of an objec

In ECMAScript v3, ex
For exam

{

Note that these array and object literals have been supported since JavaScript 1.2 but
were not standardized until ECMAScript v3.

Literals are an important part of any programming language, as it is impossible to write a
program without them. The various JavaScript literals are described in detail in Chapter
3.

2.7 Identifiers
nd

functions and to provide labels for certain loops in JavaScript code. The rules for legal
cript as they are in Java and many other languages.
 underscore (_), or a dollar sign ($).[1]

An identifier is simply a name. In JavaScript, identifiers are used to name variables a

identifier names are the same in JavaS
The first character must be a letter, an Subsequent

 so you
should avoid using dollar signs in identifiers in the code you write yourself.

i
my_variable_name

characters may be any letter or digit or an underscore or dollar sign. (Numbers are not
allowed as the first character so that JavaScript can easily distinguish identifiers from
numbers.) These are all legal identifiers:

[1] Note that dollar signs are not legal in identifiers prior to JavaScript 1.1. They are intended for use only by code-generation tools,

v13
_dummy
$str

In ECMAScript v3, identifiers can contain letters and digits from the complete Unicode
character set. Prior to this version of the standard, JavaScript identifiers are restricted to
the ASCII character set. ECMAScript v3 also allows Unicode escape sequences to appear
in identifiers. A Unicode escape is the characters \u followed by 4 hexadecimal digits

 a 16-b r encoding. For example, the identifier that specify it characte could also be
 \u03c0. Although this is an awkward syntax, it makes it possible to translate
t program t contain Unic haracters into a fo hat allows

ated with t and othe at do not supp t the full Uni de
haracter set.

rposes in

2.8 Reserved Words
There are a num ou cannot use

rs (va ames, function names, and bels) in y cript
Table

written as
JavaScrip s tha ode c rm t them to be
manipul ext editors r tools th or co
c

Finally, identifiers cannot be the same as any of the keywords used for other pu
JavaScript. The next section lists the special names that are reserved in JavaScript.

ber of reserved words in JavaScript. These are words that y
as identifie
programs.

riable n
 2-1

 loop la our JavaS
 lists the k ds standardized by ECMAScript v3. These words

ial me to JavaS

e 2-1 served Java word

eywor
have spec aning cript -- they are part of the language syntax itself.

Tabl . Re Script key s

break do if switc peofh ty

case else in this var

catch false instanceof throw void

continue finally new true while

default for null try with

delete function return

Table 2-2 lists other reserved keywords. These words are not currently used in
JavaScript, but they are reserved by ECMAScript v3 as possible future extensions to the
language.

Table 2-2. Words reserved for ECMA extensions

abstract double goto native static

boolean enum implements package super

byte export import private synchronized

char extends int protected throws

Table ions 2-2. Words reserved for ECMA extens

abstract double a statigoto n tive c

class final terfac u transin e p blic ient

const float g sh volatlon ort ile

debugger

In addition to some of the ser ds ju current draf
CMAScript v4 standard are contemplating the use of the keywords as, is, namespace,
nd use. Current JavaScript interpreters will not prevent you from using these four words
s identifiers, but you should avoid them anyway.

ou should also avoid using as identifiers the names of global variables and functions
at are predefined by JavaScript. If you create variables or functions with these names,

ither you will get an error (if the property is read-only) or you will redefine the existing
ariable or function -- something you should not do unless you know exactly what you're

formally re ved wor st listed, ts of the
E
a
a

Y
th
e
v
doing. Table 2-3 lists global variables and functions defined by the ECMAScript v
standard. Specific implementations may define other global properties, and each s
JavaScript embedding (client-side, server-side, etc.) will have its own extensive lis

3
pecific
t of

global properties.[2]

[2] See the Window object in the client-side reference section of this book for a list of the additional global variables and functions de
client-side JavaScript.

Table 2-3. Other identifiers to avoid

fined by

arguments encodeURI Infinity Object String

Array Error isFinite parseFloat SyntaxError

Boolean escape isNaN parseInt TypeError

Date eval Math RangeError undefined

decodeURI EvalError NaN ReferenceError unescape

decodeURIComponent Function Number RegExp URIError

Chapter 3. Data Types and Values
Computer programs work by manipulating values , such as the number 3.14 or the text
"Hello World". The types of values that can be represented and manipulated in a
programming language are known as data types, and one of the most fundamental
characteristics of a programming language is the set of data types it supports. JavaScript

o

imitive data types, JavaScript supports a composite data type
known as object. An object (that is, a member of the data type object) represents a

er primitive values, like numbers and strings, or composite
s). Objects in JavaScript have a dual nature: an object can

d to perform

we'll treat the function data type independently of the object and array types.

ds
e

ul pattern-matching tool described in Chapter 10

allows you to work with three primitive data types: numbers, strings of text (known as
"strings"), and boolean truth values (known as "booleans"). JavaScript also defines tw
trivial data types, null and undefined, each of which defines only a single value.

In addition to these pr

collection of values (eith
values, like other object
represent an unordered collection of named values or an ordered collection of numbered
values. In the latter case, the object is called an array . Although objects and arrays are
fundamentally the same data type in JavaScript, they behave quite differently and will
usually be considered distinct types throughout this book.

JavaScript defines another special kind of object, known as a function . A function is an
object that has executable code associated with it. A function may be invoke
some kind of operation. Like arrays, functions behave differently from other kinds of
objects, and JavaScript defines special language syntax for working with them. Thus,

In addition to functions and arrays, core JavaScript defines a few other specialized kin
of objects. These objects do not represent new data types, just new classes of objects. Th
Date class defines objects that represent dates, the RegExp class defines objects that
represent regular expressions (a powerf),
and the Error class defines objects that represent syntax and runtime errors that can occur

introduces the object, array, and function data types, which are fully documented in
apter 7

in a JavaScript program.

The remainder of this chapter documents each of the primitive data types in detail. It also

Ch , Chapter 8, and Chapter 9. Finally, it provides an overview of the Date,
d Error classes, which are documented in full detail in the core reference
is book.

t
ing-point values. JavaScript represents numbers using the 64-bit

floating-point format defined by the IEEE 754 standard,[1]

RegExp, an
ection of ths

3.1 Numbers
Numbers are the most basic data type; they require very little explanation. JavaScript
differs from programming languages such as C and Java in that it does not make a
distinction between integer values and floating-point values. All numbers in JavaScrip
are represented as float

 which means it can represent

numbers as large as ±1.7976931348623157 x 10308 and as small as ±5 x 10 -324.

lmost all

teral can be preceded by a minus sign (-) to make the

gation operator (see Chapter 5

[1] This format should be familiar to Java programmers as the format of the double type. It is also the double format used in a
modern implementations of C and C++.

When a number appears directly in a JavaScript program, we call it a numeric literal.
JavaScript supports numeric literals in several formats, as described in the following
sections. Note that any numeric li
number negative. Technically, however, - is the unary ne),

3.1.1 Integer Literals

e:

ular the bitwise operators described in

not part of the numeric literal syntax.

In a JavaScript program, a base-10 integer is written as a sequence of digits. For exampl

0
3
10000000

The JavaScript number format allows you to exactly represent all integers between -
9007199254740992 (-253) and 9007199254740992 (253), inclusive. If you use integer
values larger than this, you may lose precision in the trailing digits. Note, however, that
certain integer operations in JavaScript (in partic
Chapter 5) are performed on 32-bit int
2147483647 (2

egers, which range from -2147483648 (-231) to

gnizes hexadecimal (base-16)

31 -1).

3.1.2 Hexadecimal and Octal Literals

In addition to base-10 integer literals, JavaScript reco
values. A hexadecimal literal begins with "0x" or "0X", followed by a string of
hexadecimal digits. A hexadecimal digit is one of the digits 0 through 9 or the letters a (or
A) through f (or F), which are used to represent values 10 through 15. Examples of
hexadecimal integer literals are:

0xff // 15*16 + 15 = 255
0xCAFE911

(base 10)

lthough the ECMAScript standard does not support them, some implementations of
 in octal (base-8) format. An octal literal

A
JavaScript allow you to specify integer literals
begins with the digit 0 and is followed by a sequence of digits, each between 0 and 7. For

 7 = 255 (base 10)

example:

0377 // 3*64 + 7*8 +

write an integer literal with a leading zero -- you cannot know whether an implementation

real
e is represented as the integral part of the number, followed by a

decimal point and the fractional part of the number.

Floating-point literals may also be represented using exponential notation: a real number

For example:

2345.789

1.4738223E-32 // 1.4738223 x 10-32

Note that there are infinitely many real numbers, but only a finite number of them

mbers in
JavaScript, the representation of the number will often be an approximation of the actual

 Numbers

ithmetic operators that the language
on, * for multiplication, and / for

r arithmetic operators can be found in Chapter 5

will interpret it as an octal or decimal value.

3.1.3 Floating-Point Literals

Floating-point literals can have a decimal point; they use the traditional syntax for
numbers. A real valu

followed by the letter e (or E), followed by an optional plus or minus sign, followed by
an integer exponent. This notation represents the real number multiplied by 10 to the
power of the exponent.

More succinctly, the syntax is:

[digits][.digits][(E|e)[(+|-)]digits]

3.14

.333333333333333333
6.02e23 // 6.02 x 1023

(18437736874454810627, to be exact) can be represented exactly by the JavaScript
floating-point format. This means that when you're working with real nu

number. The approximation is usually good enough, however, and this is rarely a
practical problem.

3.1.4 Working with

JavaScript programs work with numbers using the ar
rovides. These include + for addition, - for subtractip

division. Full details on these and othe .

matical functions that are a core
 all stored as properties of a

Math to access them. For example,
here's how to compute the sine of the numeric value x:

In addition to these basic arithmetic operations, JavaScript supports more complex
mathematical operations through a large number of mathe
part of the language. For convenience, these functions are
ingle Math object, so we always use the literal name s

sine_of_x = Math.sin(x);

th.sqrt(x*x + y*y);

ng()

var x = 33;
var y = x.toString(2); // y is "100001"

To invoke th () method on a number literal,
prevent the . al point:

y = (257).toString(0x10);

3.1.5 Special Numeric Values

point value becomes
est representable finite num

nit becomes lower
t tive d as -
nfinity

l to any number, including itself! For this reason, a
special function, isNaN(), is required to test for this value. A related function,
sFinite() , tests whether a number is not NaN and is not positive or negative infinity.

And to compute the square root of a numeric expression:

hypot = Ma

See the Math object and subsequent listings in the core reference section of this book for
full details on all the mathematical functions supported by JavaScript.

There is also one interesting method that you can use with numbers. The toStri
method converts an integer to a string, using the radix, or base, specified by its argument
(the base must be between 2 and 36). For example, to convert a number to binary, use
toString() like this:

e toString
 from being interpreted as a decim

you can use parentheses to

var

 // y is "101"

JavaScript uses several special num
larger than the larg

eric values. When a floating-
ber, the result is a special infinity value,

which JavaScript prints as Infi y. Similarly, when a negative value
han the last representable nega

.
number, the result is negative infinity, printe

I

Another special JavaScript numeric value is returned when a mathematical operation
(such as division of zero by zero) yields an undefined result or an error. In this case, the
result is the special not-a-number value, printed as NaN. The not-a-number value behaves
unusually: it does not compare equa

i

Table 3-1 lists several constants that JavaScript defines to represent these special numeric
values.

Table 3-1. Special numeric constants

Constant Meaning

Infinity Special value to represent infinity

NaN Special not-a-number value

Number.MAX_VALUE Largest representable number

Number.MIN_VALUE Smallest (closest to zero) representable number

Number.NaN Special not-a-number value

Number.POSITIVE_INFINITY Special value to represent infinity

Number.NEGATIVE_INFINITY Special value to represent negative infinity

The Infinity and NaN constants are defined by the ECMAScript v1 standard and are not
 JavaScript 1.3. The various Number constants, however, have been

marks. Note that JavaScript does not have a character data type such as char,
like C, C++, and Java do. To represent a single character, you simply use a string that has

A string is a sequence of zero or more Unicode characters enclosed within single or

gle line;

3.14"
'name="myform"'
"Wouldn't you prefer O'Reilly's book?"
"This string\nhas two lines"
"pi is the ratio of a circle's circumference to its diameter"

implemented prior to
implemented since JavaScript 1.1.

3.2 Strings
A string is a sequence of Unicode letters, digits, punctuation characters, and so on -- it is
the JavaScript data type for representing text. As you'll see shortly, you can include string
literals in your programs by enclosing them in matching pairs of single or double
quotation

a length of 1.

3.2.1 String Literals

double quotes (' or "). Double-quote characters may be contained within strings
delimited by single-quote characters, and single-quote characters may be contained
within strings delimited by double quotes. String literals must be written on a sin
they may not be broken across two lines. If you need to include a newline character in a
string literal, use the character sequence \n , which is documented in the next section.
Examples of string literals are:

"" // The empty string: it has zero characters
'testing'
"

As illustrated in the last example string shown, the ECMAScript v1 standard allows
Unicode characters within string literals. Implementations prior to JavaScript 1.3,
however, typically support only ASCII or Latin-1 characters in strings. As we'll see
next section, de

 in the
 you can also inclu Unicode characters in your string literals using special

"escape sequences." This is useful if your text editor does not provide complete Unicode

).

aScript code often contains strings of HTML
code, and HTML code often contains strings of JavaScript code. Like JavaScript, HTML

 strings. Thus, when combining
vaScript and HTML, it is a good idea to use one style of quotes for JavaScript and the

3

h
ble

hat represents a newline
character.[2]

support.

Note that when you use single quotes to delimit your strings, you must be careful with
English contractions and possessives like can't and O'Reilly's. Since the apostrophe is the
same as the single-quote character, you must use the backslash character (\) to escape
any apostrophes that appear in single-quoted strings (this is explained in the next section

In client-side JavaScript programming, Jav

uses either single or double quotes to delimit its
Ja
other style for HTML. In the following example, the string "Thank you" is single-quoted
within a JavaScript expression, which is double-quoted within an HTML event handler
attribute:

Click Me

.2.2 Escape Sequences in String Literals

The backslash character (\) has a special purpose in JavaScript strings. Combined wit
the character that follows it, it represents a character that is not otherwise representa
within the string. For example, \n is an escape sequence t

[2] C, C++, and Java programmer

ample, mentioned in the pr cape, which represents
 single q This escape sequence is useful when you need
nclude a hat is contained within single quotes. You can
 why we ences -- here, the backslash allows us to escape from

acter. Instead of using it to mark the end
he string e:

le 3-2

s will already be familiar with this and other JavaScript escape sequences.

Another ex evious section, is the \' es
the
to i

uote (or apostrophe) character.
n apostrophe in a string literal t

see
the usual interpretation of the single-quote char

 call these escape sequ

of t , we use it as an apostroph

'You\'re right, it can\'t be a quote'

Tab li pe sequences and the characters they represent. Two of
 escape s that can be used to represent any character by

ode as a hexadecimal number. For example,

sts the JavaScript esca
the
specifying its Latin-1 or Unicode character c

equences are generic ones

the sequence \xA9 represents the copyright symbol, which has the Latin-1 encoding
given by the hexadecimal number A9. Similarly, the \u escape represents an arbitrary
Unicode character specified by four hexadecimal digits. \u03c0 represents the character

, for example. Note that Unicode escapes are required by the ECMAScript v1 standard
 are not lementations prior to JavaScript 1.3. Some

mentations of JavaScript also allow a Latin-1 character to be specified by three
al digits equence is not supported in the
MAScri uld no longer be used.

but
imple

typically supported in imp

oct following a backslash, but this escape s
EC pt v3 standard and sho

Table 3-2. JavaScript escape sequences

Sequence Character represented

\0 The NUL character (\u0000).

\b Backspace (\u0008).

\t Horizontal tab (\u0009).

\n Newline (\u000A).

\v Vertical tab (\u000B).

\f Form feed (). \u000C

\r Carriage return (\u000D).

\" Double quote (\u0022).

\' Apostrophe or single quote (\u0027).

\\ Backslash (\u005C).

\xXX The Latin-1 character specified by the two hexadecimal digits XX.

\uXXXX The Unicode character specified by the four hexadecimal digits XXXX.

\XXX The Latin-1 character specified by the octal digits XXX, between 1 and 37
Not supported by ECMAScript v3; do not use this escape sequence.

7.

Finally, note that the backslash escape cannot be used before a line break to continue a
ring (or other JavaScript) token across two lines or to include a literal line break in a st

string. If the \ character precedes any character other than those shown in Table 3-2, the
backslash is simply ignored (although future versions of the language may, of course
define new escape sequences). For exam

,
ple, \# is the same thing as #.

3.2.3 Working with Strings

ility to concatenate strings. If you use
use this operator on strings, it joins

the first. For example:

sg = "Hello, " + "world"; // Produces the string "Hello, world"

e number of characters it contains -- use the
 property of the string. If the variable contains a string, you access its length like

You can use a number of methods to operate on strings. For example, to get the last

s.length - 1)

o extract the second, third, and fourth characters from a string s:

entation of these methods in the core reference section of this book, under the
s.

As you can tell from the previous examples, JavaScript strings (and JavaScript arrays, as

s) using array notation, so the earlier call to charAt() could

also be written like this:

One of the built-in features of JavaScript is the ab
the + operator with numbers, it adds them. But if you
them by appending the second to

m
greeting = "Welcome to my home page," + " " + name;

To determine the length of a string -- th
length s
this:

s.length

character of a string s:

last_char = s.charAt(

T

sub = s.substring(1,4);

To find the position of the first letter a in a string s:

i = s.indexOf('a');

There are quite a few other methods that you can use to manipulate strings. You'll find
full docum
String object and subsequent listing

we'll see later) are indexed starting with zero. That is, the first character in a string is
character 0. C, C++, and Java programmers should be perfectly comfortable with this
convention, but programmers used to languages with 1-based strings and arrays may find
that it takes some getting used to.

In some implementations of JavaScript, individual characters can be read from strings
(but not written into string

last_char = s[s.length - 1];

re

n Values
The number and string data types have a large or infinite number of possible values. The

ues are
represented by the literals true and false. A boolean value represen

This code tests to see if the value of the variable a is equal to the number 4. If it is, the
s the boolean value true. If a is not equal to 4, the result of the

else

 if equals . If so, it adds to ; otherwise, it adds to .

es
 yes (true) and no (false).

ometimes it is even useful to consider them equivalent to 1 (true) and 0 (false). (In
fact, JavaScript does just this and converts true and false to 1 and 0 when necessary.)[3]

Note, however, that this syntax is not part of the ECMAScript v3 standard, is not
portable, and should be avoided.

When we discuss the object data type, you'll see that object properties and methods a
used in the same way that string properties and methods are used in the previous
examples. This does not mean that strings are a type of object. In fact, strings are a
distinct JavaScript data type. They use object syntax for accessing properties and
methods, but they are not themselves objects. We'll see just why this is at the end of this
chapter.

3.3 Boolea

boolean data type, on the other hand, has only two. The two legal boolean val
ts a truth value -- it

says whether something is true or not.

Boolean values are generally the result of comparisons you make in your JavaScript
programs. For example:

a == 4

result of this comparison i
comparison is false.

Boolean values are typically used in JavaScript control structures. For example, the
if/else statement in JavaScript performs one action if a boolean value is true and
another action if the value is false. You usually combine a comparison that creates a
boolean value directly with a statement that uses it. The result looks like this:

if (a == 4)
 b = b + 1;

 a = a + 1;

This code checks a 4 1 b 1 a

Instead of thinking of the two possible boolean values as true and false, it is sometim
convenient to think of them as on (true) and off (false) or
S

[3] C programmers should note that JavaScript has a distinct boolean data type, unlike C, which simply uses integer values to simulate boolea
values. Java programmers should note that although JavaScript has a boolean type, it is not nearly as pure as the Java boolean data type --
JavaScript boolean values are easily converted to and from other data types, and so in practice, the use of boolean values in JavaScript is much
more like their use in C than in Java.

n

s
 a JavaScript program or

 the JavaScript implementation. Although a function is defined only once, a
JavaScript program can execute or invoke it any number of times. A function may be

 The function is named square. It expects one
argument, x.

Once a function is defined, you can invoke it by following the function's name with an
f arguments within parentheses. The following lines are

y
ture

re not data types. The fact
that functions are true values in JavaScript gives a lot of flexibility to the language. It

s, arrays, and objects, and it means that
nctions can be passed as arguments to other functions. This can quite often be useful.

We'll learn more about defining and invoking functions, and also about using them as

3.4 Function
A function is

redefined by
a piece of executable code that is defined by

p

passed arguments, or parameters, specifying the value or values upon which it is to
perform its computation, and it may also return a value that represents the results of that
computation. JavaScript implementations provide many predefined functions, such as the
Math.sin() function that computes the sine of an angle.

JavaScript programs may also define their own functions with code that looks like this:

function square(x) //

{ // The body of the function begins here.
 return x*x; // The function squares its argument and returns
that value.
} // The function ends here.

optional comma-separated list o
function invocations:

y = Math.sin(x);
y = square(x);
d = compute_distance(x1, y1, z1, x2, y2, z2);
move();

An important feature of JavaScript is that functions are values that can be manipulated b
JavaScript code. In many languages, including Java, functions are only a syntactic fea
of the language -- they can be defined and invoked, but they a

means that functions can be stored in variable
fu

data values, in Chapter 7.

Since functions are values just like numbers and strings, they can be assigned to object
roperties just like other values can. When a function is assigned to a property of an p

object (the object data type and object properties are described in Section 3.5), it is often
referred to as a method of that object. Methods are an important part of object-oriented
programming. We'll see more about them in Chapter 8.

3.4.1 Function Literals

In the preceding section, we saw the definition of a function square(). The syntax
shown there is used to define most functions in most JavaScript programs. However,

, followed by an

optional function name, followed by a parenthesized list of function arguments and the
nction literal looks just like

 function definition, except that it does not have to have a name. The big difference is

 a function literal:

the
ions to

 literal data values within a program. Although it is not immediately
might choose to use function literals in a program, we'll see later that in
hey can be quite convenient and useful.

var square = new Function("x", "return x*x;");

Defining a function in this way is not often useful. It is usually awkward to express the
n

ns defined in either of the other two

s

ject, followed by
a period and the name of the property. For example, if an object named image has

 refer to those properties like this:

image.width
image.height

ECMAScript v3 provides a syntax (implemented in JavaScript 1.2 and later) for defining
function literals. A function literal is defined with the function keyword

body of the function within curly braces. In other words, a fu
a
that function literals can appear within other JavaScript expressions. Thus, instead of
defining the function square() with a function definition:

function square(x) { return x*x; }

We can define it with

var square = function(x) { return x*x; }

Functions defined in this way are sometimes called lambda functions in homage to
LISP programming language, which was one of the first to allow unnamed funct
be embedded as
obvious why one
dvanced scripts ta

There is one other way to define a function: you can pass the argument list and the body
of the function as strings to the Function() constructor. For example:

function body as a string, and in many JavaScript implementations, functions defined i
this way will be less efficient than functio ways.

3.5 Objects
An object is a collection of named values. These named values are usually referred to a
properties of the object. (Sometimes they are called fields of the object, but this usage
can be confusing.) To refer to a property of an object, you refer to the ob

properties named width and height, we can

Properties of objects are, in many ways, just like JavaScript variables; they can c
any type of data, including arrays, functions, and other objects. Thus, you might see
JavaScript code like this:

ontain

document.myform.button

his code refers to the button property of an object that is itself stored in the myform
property of an object named .

 a method, and the property name becomes the method name. To

invoke a method of an object, use the . syntax to extract the function value from the
ntax to invoke that function. For example, to invoke the

 method of the Document object, you can use code like this:

e arrays -- that is, they can
 an object is used in this way,

 different syntax is generally required to access the object's properties: a string

:

erful data type; they are useful for a number of programming
in their traditional and associative array

T
document

As mentioned earlier, when a function value is stored in a property of an object, that
function is often called

object, and then use the () sy
write()

document.write("this is a test");

Objects in JavaScript have the ability to serve as associativ
ssociate arbitrary data values with arbitrary strings. Whena

a
containing the name of the desired property is enclosed within square brackets. Using this
syntax, we could access the properties of the image object mentioned previously with
code like this

image["width"]
image["height"]

Associative arrays are a pow
techniques. We'll learn more about objects
usages in Chapter 8.

3.5.1 Creating Objects

As we'll see in Chapter 8, objects are created b g specy invokin ial constructor functions.
For example, the following lines all create new objects:

ar o = new Object();
var now = new Date();

i");

v

var pattern = new RegExp("\\sjava\\s", "

Once you have created an object of your own, you can use and set its properties however
ou desire:

point.y = -1.2;

ines (and JavaScript 1.2 implements) an object literal syntax that
ed an

t: { x: 4, y: 4}
 };

 constant -- they can be
arbitrary JavaScript expressions:

An array is a collection of data values, just as an object is. While each data value
ame, each data value in an array has a number, or index. In

JavaScript, you retrieve a value from an array by enclosing an index within square

dexes begin with zero. Thus,
a[2] refers to the third element of the array a.

pe of JavaScript data, including references to other arrays or to
ample:

h

y

var point = new Object();
point.x = 2.3;

3.5.2 Object Literals

ECMAScript v3 def
allows you to create an object and specify its properties. An object literal (also call
object initializer) consists of a comma-separated list of colon-separated property/value
pairs, all enclosed within curly braces. Thus, the object point in the previous code could
also be created and initialized with this line:

var point = { x:2.3, y:-1.2 };

Object literals can also be nested. For example:

var rectangle = { upperLeft: { x: 2, y: 2 },
 lowerRigh

Finally, the property values used in object literals need not be

var square = { upperLeft: { x:point.x, y:point.y },
 lowerRight: { x:(point.x + side), y:(point.y+side) }};

3.6 Arrays

contained in an object has a n

brackets after the array name. For example, if an array is named a, and i is a non-
negative integer, a[i] is an element of the array. Array in

Arrays may contain any ty
ons. For exobjects or functi

d

ocument.images[1].widt

This code refers to the width property of an object stored in the second element of an
array stored in the images property of the document object.

Note that the arrays described here differ from the associative arrays described in Section
3.5. The regular arrays we are discussing here are indexed by non-negative integers.
Associative arrays are indexed by strings. Also note that JavaScript does not support

, the elements of an array do not all need to be of the same type, as they
do in typed languages like Java. We'll learn more about arrays in Chapter 9

multidimensional arrays, except as arrays of arrays. Finally, because JavaScript is an
untyped language

.

.6.1 Creating Arrays

tor function. Once created, any number
sily be assigned to the array:

:3 });

 constructor, it specifies the length of

ls

al syntax for creating and
initializing arrays. An array literal (or array initializer) is a comma-separated list of

d

3

Arrays can be created with the Array() construc
of indexed elements can ea

var a = new Array();
a[0] = 1.2;
a[1] = "JavaScript";
a[2] = true;
a[3] = { x:1, y:3 };

Arrays can also be initialized by passing array elements to the Array() constructor.
Thus, the previous array-creation and -initialization code could also be written:

var a = new Array(1.2, "JavaScript", true, { x:1, y

If you pass only a single number to the Array()
the array. Thus:

v

ar a = new Array(10);

creates a new array with 10 undefined elements.

3.6.2 Array Litera

ECMAScript v3 defines (and JavaScript 1.2 implements) a liter

values contained within square brackets. The values within the brackets are assigne
sequentially to array indexes starting with zero.[4] For example, in JavaScript 1.2 the ar
creation and initialization co

ray
de in the previous section could also be written as:

en an array literal is specified with a number as its single element, that number
 first element. While this behavior mirrors that of the Array() constructor, it

n this context.

[4] Netscape's JavaScript 1.2 implementation has a bug: wh
specifies the length of the array rather than the value of the
is clearly inappropriate i

var a = [1.2, "JavaScript", true, { x:1, y:3 }];

Like object literals, array literals can be nested:

var matrix = [[1,2,3], [4,5,6], [7,8,9]];

Also, as with object litera
need not be restricted to c

ls, the elements in array literals can be arbitrary expressions and
onstants:

Undefined elements can be included in an array literal by simply omitting a value

[1,,,,5];

3.7 null
lly

umber, string, or boolean value.[5]

var base = 1024;
var table = [base, base+1, base+2, base+3];

between commas. For example, the following array contains five elements, including
three undefined elements:

var sparseArray =

The JavaScript keyword null is a special value that indicates no value. null is usua
considered to be a special value of object type -- a value that represents no object. null is
a unique value, distinct from all other values. When a variable holds the value null, you
know that it does not contain a valid object, array, n

 a variable that has been declared but never had a value assigned to it,
 that does not exist. Note that this special undefined value is not the

st

[5] C and C++ programmers should note that null in JavaScript is not the same as 0, as it is in those languages. In certain circumstances
null is converted to 0, but the two are not equivalent.

3.8 undefined
Another special value used occasionally by JavaScript is the undefined value returned
when you use either
or an object property
ame as null. s

Although null and the undefined value are distinct, the == equality operator considers
them to be equal to one another. Consider the following:

my.prop == null

This comparison is true either if the my.prop property does not exist or if it does exi
but contains the value null. Since both null and the undefined value indicate an

absence of value, this equality is often what we want. However, if you truly must
distinguish between a

null value and an undefined value, use the === identity operator

or the typeof operator (see Chapter 5 for details).

Unlike null, undefined is not a reserved word in JavaScript. The ECMAScript v3

entation, you can treat

 you are not sure that your implementation has the undefined variable, you can simply
declare your own:

standard specifies that there is always a global variable named undefined whose initial
value is the undefined value. Thus, in a conforming implem
undefined as a keyword, as long as you don't assign a value to the variable.

If

var undefined;

By declaring but not initializing the variable, you assure that it has the undefined value.
The void operator (see Chapter 5) provides another way to obtain the undefined value.

ate Object

ted with the new operator

3.9 The D
The previous sections have described all of the fundamental data types supported by
JavaScript. Date and time values are not one of these fundamental types, but JavaScript
does provide a class of object that represents dates and times and can be used to
manipulate this type of data. A Date object in JavaScript is crea
and the Date() constructor (the new operator will be introduced in Chapter 5, and we'll
learn more about object creation in Chapter 8):

var now = new Date(); // Create an
and time.
// Create a Date object representing C

object holding the current date

hristmas.

MT time. For example:

xt

g()); // Current
date/time.

illisecond
representation that is useful for some kinds of date arithmetic.

// Note that months are zero-based, so December is month 11!
var xmas = new Date(2000, 11, 25);

Methods of the Date object allow you to get and set the various date and time values and
to convert the Date to a string, using either local time or G

xmas.setFullYear(xmas.getFullYear() + 1); // Change the date to ne
Christmas.
var weekday = xmas.getDay(); // Christmas falls on a Tuesday in
2001.
document.write("Today is: " + now.toLocaleStrin

The Date object also defines functions (not methods; they are not invoked through a Date
object) to convert a date specified in string or numeric form to an internal m

You can find full documentation on the Date object and its methods in the core reference

3.10 Regular Expressions
terns;

attern matching and for implementing search and replace operations.
JavaScript has adopted the Perl programming language syntax for expressing regular
ex port was first added to the language in JavaScript 1.2
and was standardized and extended by ECMAScript v3.

een a pair of slashes constitutes
d by one or

apter 10

section of this book.

Regular expressions provide a rich and powerful syntax for describing textual pat
they are used for p

pressions. Regular expression sup

Regular expressions are represented in JavaScript by the RegExp object and may be
created using the RegExp() constructor. Like the Date object, the RegExp object is not
one of the fundamental data types of JavaScript; it is simply a specialized kind of object
provided by all conforming JavaScript implementations.

Unlike the Date object, however, RegExp objects have a literal syntax and can be
encoded directly into JavaScript 1.2 programs. Text betw
a regular expression literal. The second slash in the pair can also be followe
more letters, which modify the meaning of the pattern. For example:

/^HTML/
/[1-9][0-9]*/
/\bjavascript\b/i

The regular expression grammar is complex and is documented in detail in Ch .
in

JavaScript code.

 the

At this point, you need only know what a regular expression literal looks like

3.11 Error Objects
ECMAScript v3 defines a number of classes that represent errors. The JavaScript
interpreter "throws" an object of one of these types when a runtime error occurs. (See
throw and try statements in Chapter 6 for a discussion of throwing and catching erro
Each error

rs.)
object has a message property that contains an implementation-specific error

ation

message. The types of predefined error objects are Error, EvalError, RangeError,
ReferenceError, SyntaxError, TypeError, and URIError. You can find out more about
these classes in the core reference section of this book.

3.12 Primitive Data Type Wrapper Objects
When we discussed strings earlier in this chapter, I pointed out a strange feature of that
data type: to operate on strings, you use object notation. For example, a typical oper
involving strings might look like the following:

var s = "These are the times that try people's souls.";
var last_word = s.substring(s.lastIndexOf(" ")+1, s.length);

If you didn't know better, it would appear that was an object and that you were
invoking m

s
ethods and reading property values of that object.

What's going on? Are strings objects, or are they primitive data types? The typeof
operator (see Chapter 5) assures us that strings have the data type "string", which is
distinct from the data type "object". Why, then, are strings manipulated using object
notation?

The truth is that a corresponding object class is defined for each of the three key primitive
data types. That is, besides supporting the number, string, and boolean data types,

pers

roperty or method of the string --
JavaScript internally creates a String wrapper object for the string value. This String

 methods
ue,
st

ote that the String object created when we use a string in an object context is a transient
one -- it is used to allow us to access a property or method and then is no longer needed,

n
inal value s. If you think this

scheme sounds elegant and bizarrely complex at the same time, you are right. Typically,

tring object explicitly in our program, we have to create a
atically discarded by the system. String objects are

JavaScript also supports Number, String, and Boolean classes. These classes are wrap
around the primitive data types. A wrapper contains the same primitive data value, but it
also defines properties and methods that can be used to manipulate that data.

JavaScript can flexibly convert values from one type to another. When we use a string in
an object context -- i.e., when we try to access a p

object is used in place of the primitive string value; the object has properties and
defined, so the use of the primitive value in an object context succeeds. The same is tr
of course, for the other primitive types and their corresponding wrapper objects; we ju
don't use the other types in an object context nearly as often as we use strings in that
context.

N

so it is reclaimed by the system. Suppose s is a string and we determine the length of the
string with a line like this:

var len = s.length;

In this case, s remains a string; the original string value itself is not changed. A new
transient String object is created, which allows us to access the length property, and the
the transient object is discarded, with no change to the orig

however, JavaScript implementations perform this internal conversion very efficiently,
and it is not something you should worry about.

I
nontransient one that is not autom
f we want to use a S

created just like other objects, with the new operator. For example:

var s = "hello world"; // A primitive string value

var S = new String("Hello World"); // A String object

Once we've created a String object S, what can we do with it? Nothing that we cannot do
ith the corresponding primitive string value. If we use the typeof operator, it tells us

that S is indeed an object, and not a string value, but except for that case, we'll find that
e can't normally distinguish between a primitive string and the String object.[6]

w

w As we've
already seen, strings are automatically converted to String objects whenever necessary. It

rns out that the reverse is also true. Whenever we use a String object where a primitive
string value is expected, JavaScript automatically converts the String to a string. So if we

se our String object with the + operator, a transient primitive string value is created so
that the string concatenation operation can be performed:

 Note, however, that the eval() method treats string values and String objects differently, and it will not behave as you expect it to if
dvertently pass it a String object instead of a primitive string value.

ear in mind that everything we've discussed in this section about string values and
String objects applies also to number and boolean values and their corresponding Number
nd Boolean objects. You can learn more about these classes from their respective entries

in the core reference section of this book. In Chapter 11

tu

u

[6]

you ina

msg = S + '!';

B

a
, we'll see more about this

rimitive type/object duality and about automatic data conversion in JavaScript.

p

Chapter 4. Variables
A variable is a name associated wit
the value. Variables allow you to sto

h a value; we say that the variable stores or contains
re and manipulate data in your programs. For

riable, sum:

 3;

ut

e of

example, the following line of JavaScript assigns the value 2 to a variable named i:

i = 2;

And the following line adds 3 to i and assigns the result to a new va

var sum = i +

These two lines of code demonstrate just about everything you need to know abo
variables. However, to fully understand how variables work in JavaScript, you need to
master a few more concepts. Unfortunately, these concepts require more than a coupl
lines of code to explain! The rest of this chapter explains the typing, declaration, scope,
contents, and resolution of variables. It also explores garbage collection and the
variable/property duality.[1]

[1] These are tricky concepts, and a complete understanding of this chapter requires an understanding of concepts introduced in later chapters of
the book. If you are relatively new to programming, you may want to read only the first two sections of this chapter and then move on to
Chapter 5, Chapter 6, and Chapter 7 before returning to finish up the remainder of this chapter.

4.1 Variable Typing
An important difference between JavaScript and languages such as Java and C is that
JavaScript is untyped. This means, in part, that a JavaScript variable can hold a value of

hich can hold only the one particular type of
 is perfectly legal in JavaScript to assign a

va, or any other strongly typed language, code like this is illegal.

A feature related to JavaScript's lack of typing is that the language conveniently and
f you attempt to

append a number to a string, for example, JavaScript automatically converts the number
ing string so that it can be appended. We'll see more about data type

onversion in Chapter 11

any data type, unlike a Java or C variable, w
data for which it is declared. For example, it
number to a variable and then later assign a string to that variable:

i = 10;
i = "ten";

In C, C++, Ja

automatically converts values from one type to another, as necessary. I

to the correspond
c .

tage of strongly
typed languages such as C++ and Java is that they enforce rigorous programming
JavaScript is obviously a simpler language for being untyped. The advan

practices, which makes it easier to write, maintain, and reuse long, complex programs.
 are shorter scripts, this rigor is not necessary and we

enefit from the simpler syntax.
Since many JavaScript programs
b

4.2 Variable Declaration
Before you use a variable in a JavaScript program, you must declare it.[2] Variable
declared with the

s are

declare it implicitly for you.

var i = 0, j = 0, k = 0;

 is

var keyword, like this:

[2] If you don't declare a variable explicitly, JavaScript will

var i;
var sum;

You can also declare multiple variables with the same var keyword:

var i, sum;

And you can combine variable declaration with variable initialization:

var message = "hello";

If you don't specify an initial value for a variable with the var statement, the variable
declared, but its initial value is undefined until your code stores a value into it.

Note that the var statement can also appear as part of the for and for/in loops
(introduced in Chapter 6), allowing you to succinctly declare the loop variable as part
the loop syntax itself. For example:

 of

for(var i = 0; i < 10; i++) document.write(i, "
");
 i++,j--) document.write(i*j, "
");
te(i, "
");

e

for(var i = 0, j=10; i < 10;
for(var i in o) document.wri

Variables declared with var are permanent: attempting to delete them with the delet
operator causes an error. (The delete operator is introduced in Chapter 5.)

4.2.1 Repeated and Omitted Declarations

It is legal and harmless to declare a variable more than once with the var statement. If t
repeated declaration has an initializer, it acts as if it were simply an assignment statement

he
.

If you attempt to read the value of an undeclared variable, JavaScript will generate an

 best to use var for all
ariables, whether global or local. (The distinction between local and global variables is

ble Scope
l

defined everywhere in your JavaScript code. On the
e
nt

riable
e same

r example, the

ar scope = "global"; // Declare a global variable
function checkscope() {

checkscope(); // Prints "local"

ou can get away with not using the var statement when you write code in the
global scope, you must always use var to declare local variables. Consider what happens

le, even

obal

e(scope); // Uses the global variable
cal"; // This implicitly declares a new

(myscope); // Uses the new global variable

checkscope(); // Prints "locallocal"
document.write(scope); // This prints "local"
document.write(myscope); // This prints "local"

error. If you assign a value to a variable that you have not declared with var, JavaScript
will implicitly declare that variable for you. Note, however, that implicitly declared
variables are always created as global variables, even if they are used within the body of
a function. To prevent the creation of a global variable (or the use of an existing global
variable) when you meant to create a local variable for use within a single function, you

ust always use the var statement within function bodies. It'sm
v
explored in more detail in the next section.)

4.3 Varia
The scope of a variable is the region of your program in which it is defined. A globa
variable has global scope -- it is
other hand, variables declared within a function are defined only within the body of th
function. They are local variables and have local scope. Function parameters also cou
as local variables and are defined only within the body of the function.

Within the body of a function, a local variable takes precedence over a global va
th the same name. If you declare a local variable or function parameter with thwi

name as a global variable, you effectively hide the global variable. Fo
following code prints the word "local":

v

 var scope = "local"; // Declare a local variable with the same
name
 document.write(scope); // Use the local variable, not the global
one
}

Although y

if you don't:

scope = "global"; // Declare a global variab
without var
function checkscope() {
 scope = "local"; // Oops! We just changed the gl

le variab
 document.writ
 myscope = "lo

global variable
 document.write
}

In general, functions do not know what variables are defined in the global scope or w
they are being used for. Thus, if a function uses a global variable instead of a loc
runs the risk of changing a value upon which some other part of the program relies.
Fortunately, avoiding this problem is simple: declare all variables with

hat
al one, it

In JavaScript 1.2 (and ECMAScript v3), function definitions can be nested. Each function
so it is possible to have several nested layers of local scope. For

e"; // A nested scope of local

);

lock-level scope. All
ion, no matter where they are declared, are defined
the following code, the variables i, j, and k all have the same

e the

 = 0; // i is defined throughout

 if (typeof o == "object") {

 10

/ j is defined, but ay not be

can
rprising results. The following code illustrates this:

var.

has its own local scope,
example:

var scope = "global scope"; // A global variable
function checkscope() {
 var scope = "local scope"; // A local variable
 function nested() {
 var scope = "nested scop
variables
 document.write(scope); // Prints "nested scope"
 }
 nested();
}

ckscope(che

4.3.1 No Block Scope

Note that unlike C, C++, and Java, JavaScript does not have b
variables declared in a funct

on. In throughout the functi
scope: all three are defined throughout the body of the function. This would not b
case if the code were written in C, C++, or Java:

function test(o) {
 var i
unction f

 var j = 0; // j is defined everywhere, not
just block
 for(var k = 0; k < 10; k++) { // k is defined everywhere, not
just loop
 document.write(k);
 }
 document.write(k); // k is still defined: prints
 }
 document.write(j); / m
initialized
}

The rule that all variables declared in a function are defined throughout the function
cause su

var scope = "global";
function f() {

alert(scope); // Displays "undefined", not "global"
 var scope = "local"; // Variable initialized here, but defined

everywhere

You might think that the first call to alert() would display "global", since the var
 scope

function f() {

 it has a value

ood programming practice to place all of your variable

ript
st kind of

ed

ndefined variable is one that has been declared but has never had a
value assigned to it. If you read the value of one of these variables, you obtain its default

The following code fragment illustrates some of the differences between truly undefined

 alert(scope); // Displays "local"
}
f();

statement declaring the local variable has not yet been executed. Because of the
rules, however, this is not what happens. The local variable is defined throughout the
body of the function, which means the global variable by the same name is hidden
throughout the function. Although the local variable is defined throughout, it is not
actually initialized until the var statement is executed. Thus, the function f in the
previous example is equivalent to the following:

 var scope; // Local variable is declared at the start of the
function
 alert(scope); // It exists here, but still has "undefined"
value
 scope = "local"; // Now we initialize it and give it a value
 alert(scope); // And here
}

This example illustrates why it is g
declarations together at the start of any function.

4.3.2 Undefined Versus Unassigned

The examples in the previous section demonstrate a subtle point in JavaSc
programming: there are two different kinds of undefined variables. The fir
undefined variable is one that has never been declared. An attempt to read the value of
such an undeclared variable causes a runtime error. Undeclared variables are undefined
because they simply do not exist. As described earlier, assigning a value to an undeclar
variable does not cause an error; instead, it implicitly declares the variable in the global
scope.

The second kind of u

value, undefined. This type of undefined variable might more usefully be called
unassigned, to distinguish it from the more serious kind of undefined variable that has not
even been declared and does not exist.

and merely unassigned variables:

var x; // Declare an unassigned variable. Its value is undefined.
alert(u); // Using an undeclared variable causes an error.
u = 3; // Assigning a value to an undeclared variable creates the
variable.

4.4 Primitive Types and Reference Types
The next topic we need to consider is the content of variables. We often say that variables

The types
can be divided into two groups: primitive types and reference types. Numbers, boolean

rrays, and functions are

ight bytes
f memory, and a boolean value can be represented with only one bit. The number type is

have or contain values. But just what is it that they contain? To answer this seemingly
simple question, we must look again at the data types supported by JavaScript.

values, and the null and undefined types are primitive. Objects, a
reference types.

A
o

 primitive type has a fixed size in memory. For example, a number occupies e

the largest of the primitive types. If each JavaScript variable reserves eight bytes of
memory, the variable can directly hold any primitive value.[3]

[3]

gth -
r

pes do not have a fixed size, their values cannot be stored directly in the eight bytes of
memory associated with each variable. Instead, the variable stores a reference to the

t the

rimitive type):

he

 This is an oversimplification and is not intended as a description of an actual JavaScript implementation.

Reference types are another matter, however. Objects, for example, can be of any len
- they do not have a fixed size. The same is true of arrays: an array can have any numbe
of elements. Similarly, a function can contain any amount of JavaScript code. Since these
ty

value. Typically, this reference is some form of pointer or memory address. It is no
data value itself, but it tells the variable where to look to find the value.

The distinction between primitive and reference types is an important one, as they behave
differently. Consider the following code that uses numbers (a p

var a = 3.14; // Declare and initialize a variable
var b = a; // Copy the variable's value to a new variable
a = 4; // Modify the value of the original variable
alert(b) // Displays 3.14; the copy has not changed

There is nothing surprising about this code. Now consider what happens if we change t
code slightly so that it uses arrays (a reference type) instead of numbers:

var a = [1,2,3]; // Initialize a variable to refer to an array
var b = a; // Copy that reference into a new variable
a[0] = 99; // Modify the array using the original reference
alert(b); // Display the changed array [99,2,3] using the new
reference

If this result does not seem surprising to you, you're already well familiar with the
distinction between primitive and reference types. If it does seem surprising, take a closer
look at the second line. Note that it is the reference to the array value, not the array itself,
th
on references to it.

at is being assigned in this statement. After that second line of code, we still have only
e array object; we just happen to have two

If the primitive versus reference type distinction is new to you, just try to keep the
variable contents in mind. Variables hold the actual values of primitive types, but they
hold only references to the values of reference types. The differing behavior of primitive
and reference types is explored in more detail in Section 11.2.

You may have noticed that I did not specify whether strings are primitive or reference
types in JavaScript. Strings are an unusual case. They have variable size, so obviously
they cannot be stored directly in fixed-size variables. For efficiency, we would expect
JavaScript to copy references to strings, not the actual contents of strings. On the other
hand, strings behave like a primitive type in many ways. The question of whether strings
are a primitive or reference type is actually moot, because strings are immutable: there is

 a reference type.

s
location, and the variables merely hold a reference to that location.

Now we need to focus briefly on the actual storage of the value.

 string, array, or object, the interpreter must allocate memory to store that entity.

or

ue called garbage
tect when an object will never again be
object is unreachable (i.e., there is no

longer any way to refer to it using the variables in the program), it knows that the object

no way to change the contents of a string value. This means that we cannot construct an
example like the previous one that demonstrates that arrays are copied by reference. In
the end, it doesn't matter much whether you think of strings as an immutable reference
type that behaves like a primitive type or as a primitive type implemented with the
internal efficiency of

4.5 Garbage Collection
Reference types do not have a fixed size; indeed, some of them can become quite large.
As we've already discussed, variables do not directly hold reference values. The value i
stored at some other

Since strings, objects, and arrays do not have a fixed size, storage for them must be
llocated dynamically, when the size is known. Every time a JavaScript program createsa

a
Whenever memory is dynamically allocated like this, it must eventually be freed up f
reuse, or the JavaScript interpreter will use up all the available memory on the system and
crash.

In languages like C and C++, memory must be freed manually. It is the programmer's
responsibility to keep track of all the objects that are created and to destroy them (freeing
their memory) when they are no longer needed. This can be an onerous task and is often
the source of bugs.

Instead of requiring manual deallocation, JavaScript relies on a techniq
collection. The JavaScript interpreter is able to de
used by the program. When it determines that an

is no longer needed and its memory can be reclaimed. Consider the following lines of
code, for example:

var s = "hello"; // Allocate memory for a string
var u = s.toUpperCase(); // Create a new string
s = u; // Overwrite reference to original string

After this code runs, the original string "hello" is no longer reachable -- there are no
references to it in any variables in the program. The system detects this fact and frees up
its storage space for reuse.

Garbage collection is automatic and is invisible to the programmer. You can create all the
garbage objects you want, and the system will clean up after you! You need to know only
enough about garbage collection to trust that it works; you don't have to wonder about
where all the old objects go. For those who aren't satisfied, however, Section 11.3,
contains further details on the JavaScript garbage-collection process.

4.6 Variables as Properties
n

 both assigned the same way, they are
ally any fundamental

 the JavaScript interpreter starts up, one of the first things it does, before executing
roperties of this object are the global

e a global JavaScript variable, what

part of a function), you can use the
ject. Within functions, this has a

You may have noticed by now that there are a lot of similarities in JavaScript betwee
variables and the properties of objects. They are
used the same way in JavaScript expressions, and so on. Is there re
difference between the variable i and the property i of an object o? The answer is no.
Variables in JavaScript are fundamentally the same as object properties.

4.6.1 The Global Object

When
any JavaScript code, is create a global object. The p
variables of JavaScript programs. When you declar
you are actually doing is defining a property of the global object.

The JavaScript interpreter initializes the global object with a number of properties that
refer to predefined values and functions. For example, the Infinity, parseInt, and
Math properties refer to the number infinity, the predefined parseInt() function, and
the predefined Math object. You can read about these global values in the core reference
section of this book.

In top-level code (i.e., JavaScript code that is not
JavaScript keyword this to refer to the global ob
different use, which is described in Chapter 7.

In client-side JavaScript, the Window object serves as the global object for all JavaScr
code contained in the browser window it represents. This global Window object has a
self-referential

ipt

window property that can be used instead of this to refer to the global

object. The Window object defines the core global properties, such as parseInt and
Math, and also global client-side properties, such as navigator and screen.

the

4.6.3 JavaScript Execution Contexts

l

4.6.2 Local Variables: The Call Object

If global variables are properties of the special global object, then what are local
variables? They too are properties of an object. This object is known as the call object.
The call object has a shorter life span than the global object, but it serves the same
purpose. While the body of a function is executing, the function arguments and local
variables are stored as properties of this call object. The use of an entirely separate object
for local variables is what allows JavaScript to keep local variables from overwriting
value of global variables with the same name.

Each time the JavaScript interpreter begins to execute a function, it creates a new
execution context for that function. An execution context is, obviously, the context in
which any piece of JavaScript code executes. An important part of the context is the
object in which variables are defined. Thus, JavaScript code that is not part of any
function runs in an execution context that uses the global object for variable definitions.
And every JavaScript function runs in its own unique execution context with its own cal
object in which local variables are defined.

An interesting point to note is that JavaScript implementations may allow multiple global
execution contexts, each with a different global object. (Although, in this case, each
global object is not entirely global.)[4] The obvious example is client-side JavaScript, i
which each separate browser window, or each frame within a window, defines a separate
global execution context. Client-side JavaScript code in each frame or window runs in its
own execution context and has its own global object. However, these separate client-side
global objects have properties that link them to one another. Thus, JavaScript code in
frame might refer to another frame with the expression

n

 one

t section.

me execution contexts

parent.frames[1], and the
global variable x in the first frame might be referenced by the expression
parent.frames[0].x in the second frame.

[4] This is merely an aside; if it does not interest you, feel free to move on to the nex

You don't need to fully understand how separate window and fra
are linked together in client-side JavaScript right now. We'll cover that topic in detail
when we discuss the integration of JavaScript with web browsers in Chapter 12. What
you should understand now is that JavaScript is flexible enough that a single JavaScript
interpreter can run scripts in different global execution contexts and that those contexts
need not be entirely separate -- they can refer back and forth to each other.

This last point requires additional consideration. When JavaScript code in one execu
context can read and write property values and execute functions that are defined in
another e

tion

xecution context, we've reached a level of complexity that requires

consideration of security issues. Take client-side JavaScript as an example. Suppose
browser window A is running a script or contains information from your local intranet,
and window B is running a script from some random site out on the Internet. In general,
we do not want to allow the code in window B to be able to access the properties of
window A. If we allow it to do this, it might be able to read sensitive company
information and steal it, for example. Thus, in order to safely run JavaScript code, ther
must be a security mechanism that preve

e
nts access from one execution context to another

when such access should not be permitted. We'll return to this topic in Chapter 21.

,

of a special call object, we can return to the notion of variable scope and
reconceptualize it. This new description of
variables in m JavaScript
works.

very JavaScript execution context has a scope chain associated with it. This scope chain
is a list or chain of objects. When JavaScript code needs to look up the value of a variable
 (a process called variable name resolution), it starts by looking at the first object in the

chain. If that object has a property named x, the value of that property is used. If the first
bject does not have a property named x, JavaScript continues the search with the next

object in the chain. If the second object does not have a property named x, the search
oves on to the next object, and so on.

 top-level JavaScript code (i.e., code not contained within any function definitions), the
e global object. All variables are looked up in

is object. If a variable does not exist, the variable value is undefined. In a (non-nested)
function, however, the scope chain consists of two objects. The first is the function's call

bject, and the second is the global object. When the function refers to a variable, the call
object (the local scope) is checked first, and the global object (the global scope) is
hecked second. A nested function would have three or more objects in its scope chain.

Figure 4-1

4.7 Variable Scope Revisited
When we first discussed the notion of variable scope, I based the definition solely on the
lexical structure of JavaScript code: global variables have global scope and variables
declared in functions have local scope. If one function definition is nested within another
variables declared within that nested function have a nested local scope. Now that we
know that global variables are properties of a global object and that local variables are
properties

scope offers a useful way to think about
any contexts; it provides a powerful new understanding of how

E

x

o

m

In
scope chain consists of a single object, th
th

o

c
 illustrates the process of looking up a variable name in the scope chain of a

nction.

Figure 4-1. The scope chain and variable resolution

fu

Chapter 5. Expressions and

n JavaScript. If you are
familiar with C, C++, or Java, you'll notice that the expressions and operators in

able to skim this chapter quickly. If you are not

s, like these:

 // An object literal
[2,3,5,7,11,13,17,19] // An array literal
function(x){return x*x;} // A function literal
i
sum

The value of a literal expression is simply the liter tself. The value of a variable
ariable contains or refers to.

terestin ting)
p s can be created by combining simp . F e saw that
7 is an expression and i is an expression. T

of this expression is determined by adding the values of the two sim
expressions. The + in this example is an operator that is used to com

to complex expression. Another ope , which i
ion. For example:

) - sum

Operators
This chapter explains how expressions and operators work i

JavaScript are very similar, and you'll be
a C, C++, or Java programmer, this chapter tells you everything you need to know about
expressions and operators in JavaScript.

5.1 Expressions
An expression is a phrase of JavaScript that a JavaScript interpreter can evaluate to
produce a value. The simplest expressions are literals or variable name

1.7 // A numeric literal
"JavaScript is fun!" // A string literal
true // A boolean literal
null // The literal null value
/java/ // A regular expression literal
{ x:2, y:2 }

 // The variable i
 // The variable sum

al value i
expression is the value that the v

These expressions are not particularly in
ex

g. More complex (and interes
le expressionsression or example, w

1. he following is also an expression:

i + 1.7

The value pler
bine two expressions

in
expressions by subtract

 a more rator is - s used to combine

(i + 1.7

This expression uses the - operator to subtract the value of the sum variable from the
value of our previous expression, i + 1.7. JavaScript supports a number of other
operators besides + and -, as you'll see in the next section.

5.2 Operator Overview
If you are a C, C++, or Java programmer, most of the JavaScrip rs should already
be familiar to you. Table 5-1

t operato
 summarizes the operators; you can refer to this table for

fe that most operators are represented by punctuation characters such as +
and . Some, however, are represented by keywords such as delete .

ey tors are regular operators, just hose express
are simply expressed using a more readable and less succinct sy

In this table, the column labeled "P" gives the operator precedence and the column
 the operator associativity, w e L (le

ciativity, the subsections that
le explain these concepts. The operators themselv

Table 5-1. JavaScript operators

re rence. Note
=
wo

 and instanceof
ed with punctuation; theyK rd opera like t
ntax.

labe
left). If you do not already understand preceden

led "A" gives hich can b
ce and asso

ft-to-right) or R (right-to-

follo
following that discussion.

w the tab es are documented

P A Operator nd
type(s) n performed Opera Operatio

15 L .
identifier cess object, Property ac

 L [] array, integer index Array

 L () function,
arguments Function call

 R new constructor call Create new object

14 R ++ lvalue Pre- or post-increment
(unary)

 R -- lvalue Pre- or post-decrement
(unary)

 R - number ion) Unary minus (negat

 R + number p) Unary plus (no-o

 R ~ integer Bitwise complement
(unary)

 R ! boolean Logical complement
(unary)

Table 5-1. JavaScript operators

P A Operator Operand
type(s) Operation performed

 R delete roperty lvalue Undefine a p
(unary)

 R typeof ype (unary) any Return data t

 R void any Return undefined value
(unary)

13 /, % n, division, L *, numbers Multiplicatio
remainder

12 ion L +, - numbers Addition, subtract

 L + strings String concatenation

11 L << integers Left shift

 L >> integers Right shift with sign-
extension

 L >>> integers Right shift with ze
extension

ro

10 L <, <= numbers or
strings

Less than, less than or
equal

 L >, >= numbers or
strings

Greater than, greater than
or equal

 L object, Check object type instanceof
constructor

 L string, object Check whether property in
exists

9 L == any Test for equality

 L != any Test for inequality

 L === any Test for identity

 L !== any Test for non-identity

8 L & integers Bitwise AND

7 L ^ integers Bitwise XOR

6 L | integers Bitwise OR

5 L && booleans Logical AND

Table 5-1. JavaScript operators

P A Operator Operand
type(s) Operation performed

4 L || booleans Logical OR

3 R ?: boolean, any,
any

Conditional operator (
operands)

3

2 R = lvalue, any Assignment

 R *=, /=, %=, +=, -=, <<=, >>=,
>>>=, &=, ^=, |= lvalue, any Assignment with

operation

1 L , any Multiple evaluation

ts a number of unary operators, which convert a
plex expression. The - operator in the

 unary operator that performs the operation of negation on the operand
ternary operator, the conditional operator ?:, which

combines the value of three expressions into a single expression.

xpressions, you must pay attention to the data types that
are being passed to operators and to the data types that are returned. Different operators

 is not legal in
JavaScript. Note, however, that JavaScript tries to convert expressions to the appropriate

ble, so the expression "3" * "5" is legal. Its value is the number 15,
ot the string "15". We'll consider JavaScript type conversions in detail in Section 11.1

5.2.1 Number of Operands

Operators can be categorized based on the number of operands they expect. Most
JavaScript operators, like the + operator we saw earlier, are binary operators that
combine two expressions into a single, more complex expression. That is, they operate on
two operands. JavaScript also suppor
single expression into a single, more com
expression -3 is a

. Finally, JavaScript supports one 3

5.2.2 Type of Operands

When constructing JavaScript e

expect their operands' expressions to evaluate to values of a certain data type. For
example, it is not possible to multiply strings, so the expression "a" * "b"

type whenever possi
n .

Notice that the assignment operators, as well as a few other operators, expect their
lefthand expressions to be lvalues. lvalue is a historical term that means "an expression
that can legally appear on the lefthand side of an assignment expression." In JavaScript,

Furthermore, some operators behave differently depending on the type of the operands.
Most notably, the + operator adds numeric operands but concatenates string operands.
Also, if passed one string and one number, it converts the number to a string and
concatenates the two resulting strings. For example, "1" + 0 yields the string "10".

variables, properties of objects, and elements of arrays are lvalues. The ECMAScript
specification allows built-in functions to return lvalues but does not define any built-in

an
s whether the comparison is true or not. For example, the expression a

< 3 returns true if the value of variable a is in fact less than 3. As we'll see, the boolean
mparison operators are used in if statements, while loops, and for

ops -- JavaScript statements that control the execution of a program based on the results
of evaluating expressions that contain comparison operators.

 Table 5-1

functions that behave that way.

Finally, note that operators do not always return the same type as their operands. The
comparison operators (less than, equal to, greater than, etc.) take operands of various
types, but when comparison expressions are evaluated, they always return a boole
result that indicate

values returned by co
lo

5.2.3 Operator Precedence

In , the column labeled "P" specifies the precedence of each operator. Operator
erators with higher
mbers.

ing expression:

The multiplication operator * has a higher precedence than the addition operator +, so the
erformed before the addition. Furthermore, the assignment operator =

the assignment is performed after all the operations on the

nd subtraction, and assignment has very low precedence and is almost always performed

5.2.4

In Tabl

precedence controls the order in which operations are performed. Op
numbers in the "P" column are performed before those with lower nu

Consider the follow

w = x + y*z;

multiplication is p
has the lowest precedence, so
righthand side are completed.

Operator precedence can be overridden with the explicit use of parentheses. To force the
addition in the previous example to be performed first, we would write:

w = (x + y)*z;

In practice, if you are at all unsure about the precedence of your operators, the simplest
thing is to use parentheses to make the evaluation order explicit. The only rules that are
important to know are these: multiplication and division are performed before addition
a
last.

Operator Associativity

e 5-1, the column labeled "A" specifies the associativity of the operator. A valu
ecifies left-to-right associativity, and a value of R specifies right-to-left
tivity. The associativity of an operator specifies the order in which operations of

e
of L sp
associa

the sam precedence are performed. Left-to-right associativity means that operations are
eft to right. For example, the addition operator has left-to-right

associativity, so:

w = x

is the s e as:

On the other hand, the following (almost nonsensical) expressions:

z;
q = a?b:c?d:e?f:g;

are equ

x = ~(
w = (x
q = a?

because the unary, assignment, and ternary conditional operators have right-to-left

5.3 A
Having
can sta

Additio

he + operator adds numeric operands or concatenates string operands. If one
a string, the other is converted to a string and the two strings are then

ed to numbers or strings that can be

Subtraction -

e
performed from l

+ y + z;

am

w = ((x + y) + z);

x = ~-~y;
w = x = y =

ivalent to:

-(~y));
 = (y = z));
b:(c?d:(e?f:g));

associativity.

rithmetic Operators
 explained operator precedence, associativity, and other background material, we
rt to discuss the operators themselves. This section details the arithmetic operators:

n (+)

T
operand is
concatenated. Object operands are convert
added or concatenated. The conversion is performed by the valueOf() method
and/or the toString() method of the object.

 ()

When - is used as a binary operator, it subtracts its second operand from its firs
operand. If used with non-numeric operands, it attempts to convert them to
numbers.

t

Multiplication (*)

Division (/)

rator divides its first operand by its second. If used with non-numeric

t

ating-

Modulo

lo the second operand. That is, it

nds, the modulo operator
to convert them to numbers. The sign of the result is the same as the sign

erand. For example, 5 % 2 evaluates to 1.

While the modulo operator is typically used with integer operands, it also works
, -4.3 % 2.1 evaluates to -0.1.

Unary

When is used as a unary operator, before a single operand, it performs unary

o

Unary

The * operator multiplies its two operands. If used with non-numeric operands, it
attempts to convert them to numbers.

The / ope
operands, it attempts to convert them to numbers. If you are used to programming
languages that distinguish between integer and floating-point numbers, you migh
expect to get an integer result when you divide one integer by another. In
JavaScript, however, all numbers are floating-point, so all divisions have flo
point results: 5/2 evaluates to 2.5, not 2. Division by zero yields positive or
negative infinity, while 0/0 evaluates to NaN.

 (%)

The % operator computes the first operand modu
returns the remainder when the first operand is divided by the second operand an
integral number of times. If used with non-numeric opera
attempts
of the first op

for floating-point values. For example

minus (-)

-
negation. In other words, it converts a positive value to an equivalently negative
value, and vice versa. If the operand is not a number, this operator attempts t
convert it to one.

plus (+)

For symmetry with the unary minus operator, JavaScript also has a unary plus
operator. This operator allows you to explicitly specify the sign of numeric
literals, if you feel that this will make your code clearer:

var profit = +1000000;

In code like this, the + operator does nothing; it simply evaluates to the value of
for non-numeric arguments, the + operator has
ent to a number. It returns NaN if the argument

single operand, which must be a
rty of an object. If the value of this
ber, the operator first attempts to

convert it to one. The precise behavior of this operator depends on its position

For example, the following code sets both and to :

i = 1;

nter

 insert a line break between the post-increment or post-

its argument. Note, however, that
the effect of converting the argum
cannot be converted.

Increment (++)

The ++ operator increments (i.e., adds 1 to) its
variable, an element of an array, or a prope
variable, element, or property is not a num

relative to the operand. When used before the operand, where it is known as the
pre-increment operator, it increments the operand and evaluates to the
incremented value of that operand. When used after the operand, where it is
known as the post-increment operator, it increments its operand but evaluates to
the unincremented value of that operand. If the value to be incremented is not a
number, it is converted to one by this process.

i j 2

i = 1;
j = ++i;

But these lines set i to 2 and j to 1:

j = i++;

This operator, in both of its forms, is most commonly used to increment a cou
that controls a loop. Note that, because of JavaScript's automatic semicolon
insertion, you may not
decrement operator and the operand that precedes it. If you do so, JavaScript will
treat the operand as a complete statement by itself and will insert a semicolon
before it.

Decrement (--)

The -- operator decrements (i.e., subtracts 1 from) its single numeric operand
which must be a variable, an element of an array, or a property of an object. If the
value of this variable, element, or property is not a number, the operator first
attempts to convert it to on

,

e. Like the ++ operator, the precise behavior of --
depends on its position relative to the operand. When used before the operand, it

 the operand but returns the undecremented value.

5. E
This se
operato
and tu .
As we'

decrements and returns the decremented value. When used after the operand, it
decrements

4 quality Operators
ction describes the JavaScript equality and inequality operators. These are
rs that compare two values to determine whether they are the same or different

 re rn a boolean value (true or false) depending on the result of the comparison
ll see in Chapter 6, they are most commonly used in things like if statements and
ps, to control the flow of program execution.

Equality (==) and Identity (===)

 and === operators check whether two values are the same, using two different
ons of sameness. Both operators accept operands of any type, and both return

for loo

5.4.1

The ==
definiti
tru if
known as the identity operator, and it check
usin a ; it
checks
that allo

The identity operator is s dized by ECMAScript v3 and implemented in JavaScript

tors. Be sure you understand the differences between the assignment,
ality, and identity operators, and be careful to use the right one when coding!

Alt u
confusi dentical to"
for =

In JavaScri is case,
two separa
values are n ey
contain the m
exactly the m

On the othe h
that two variab
never equal or
that contain ref
same object, a

e their operands are the same and false if they are different. The === operator is
s whether its two operands are "identical"

g strict definition of sameness. The == operator is known as the equality operator
whether its two operands are "equal" using a more relaxed definition of sameness
ws type conversions.

tandar
1.3 and later. With the introduction of the identity operator, JavaScript supports =, ==,
and === opera
equ

ho gh it is tempting to call all three operators "equals," it may help to reduce
on if you read "gets or is assigned" for =, "is equal to" for ==, and "is i

== .

pt, numbers, strings, and boolean values are compared by value. In th
te values are involved, and the == and === operators check that these two
ide tical. This means that two variables are equal or identical only if th
 sa e value. For example, two strings are equal only if they each contain
 sa e characters.

r and, objects, arrays, and functions are compared by reference. This means
les are equal only if they refer to the same object. Two separate arrays are
identical, even if they contain equal or identical elements. Two variables
erences to objects, arrays, or functions are equal only if they refer to the

rray, or function. If you want to test that two distinct objects contain the

same propertie have to
check the prop or equality or identity. (And, if any of the
properties e ve to decide how deep
you want the comparison to go.)

The following rules are used to determine whether two values are identical according to

• If the two values have different types, they are not identical.

 value

• If both values are strings and contain exactly the same characters in the same
t

g
haracter basis, and it assumes

that all strings have been converted to a "normalized form" before they are
" reference page in the core reference

section of this book for another way to compare strings.

l. If

 are used to determine whether two values are equal according to the
== operator:

• If the two values have the same type, test them for identity. If the values are

her is a string, convert the string to a
number and try the comparison again, using the converted value.

object to a primitive and try the comparison again. An object is converted
to a primitive value by either its toString() method or its valueOf()

f core JavaScript attempt valueOf()
) conversion, except for the Date class,

which performs toString() conversion. Objects that are not part of core

s or that two distinct arrays contain the same elements, you'll
erties or elements individually f

or lements are themselves objects or arrays, you'll ha

the === operator:

• If both values are numbers and have the same value, they are identical, unless
either or both values are NaN, in which case they are not identical. The NaN
is never identical to any other value, including itself! To check whether a value is
NaN, use the global isNaN() function.

positions, they are identical. If the strings differ in length or content, they are no
identical. Note that in some cases, the Unicode standard allows more than one
way to encode the same string. For efficiency, however, JavaScript strin
comparison compares strictly on a character-by-c

compared. See the "String.localeCompare()

• If both values are the boolean value true or both are the boolean value false,
they are identical.

• If both values refer to the same object, array, or function, they are identica
they refer to different objects (or arrays or functions) they are not identical, even
if both objects have identical properties or both arrays have identical elements.

• If both values are null or both values are undefined, they are identical.

The following rules

identical, they are equal; if they are not identical, they are not equal.
• If the two values do not have the same type, they may still be equal. Use the

following rules and type conversions to check for equality:
o If one value is null and the other is undefined, they are equal.
o If one value is a number and the ot

o If either value is true, convert it to 1 and try the comparison again. If
either value is false, convert it to 0 and try the comparison again.

o If one value is an object and the other is a number or string, convert the

method. The built-in classes o
conversion before toString(

JavaScript may convert themselves to primitive values in an
implementation-defined way.

o Any other combinations of values are not equal.

As an example of testing for equality, consider the comparison:

true

arison is done again. Next, the string "1" is converted to the number 1. Since both
umbers are now the same, the comparison returns true.

attempted to convert a string to a number
and fai ted,
instead false
comparison. This bug has been fixed in JavaScript 1.2.

and inequality in Netscape

The ==
behave in
Netscap t> tag that explicitly specifies
JavaScript 1.2 as its language attribute, the equality operator behaves like the identity

ty operator behaves like the non-identity operator. To avoid this
language="JavaScript1.2" attribute to embed your

client-s

"1" == true

This expression evaluates to true, indicating that these very different-looking values are
in fact equal. The boolean value is first converted to the number 1, and the
comp
n

When the equality operator in JavaScript 1.1
led, it displayed an error message noting that the string could not be conver
 of converting the string to NaN and returning as the result of the

5.4.1.1 Equality

 operator always behaves as described previously, and the != operator always
s as described in the next section, with one exception. In client-side JavaScript
e 4 and later, when embedded in a <scrip

operator, and the inequali
incompatibility, never use the

ide JavaScript code. See Section 11.6, for a complete list of similar JavaScript 1
atibilities.

.2
incomp

5.4.2 Inequality (!=) and Non-Identity (!==)

 for the exact opposite of the == and === operators. The !=
inequa
otherw
other a s standardized by ECMAScript

!= !== tical to." See the

pre u
types.

5. R

The != and !== operators test
lity operator returns false if two values are equal to each other and returns true
ise. The !== non-identity operator returns false if two values are identical to each
nd returns true otherwise. Note that this operator i

v3 and implemented in JavaScript 1.3 and later.

As we'll see, the ! operator computes the Boolean NOT operation. This makes it easy to
remember that stands for "not equal to" and stands for "not iden

vio s section for details on how equality and identity are defined for different data

5 elational Operators

This se
a relati erty-of") between two values and return true
or f s

ction describes the JavaScript relational operators. These are operators that test for
onship (such as "less-than" or "prop

al e depending on whether that relationship exists. As we'll see in Chapter 6, they
t commonly used in things like if statements and while loops, to control
ram execution.

are mos the flow
of prog

5.5

The mo
which a o determine the relative order of two values. The comparison operators
are:

an be
are not numbers or

strings, they are compared as strings.
• If one operand is or converts to a string and one is or converts to a number, the

operator attempts to convert the string to a number and perform a numerical
comparison. If the string does not represent a number, it converts to NaN, and the

.1 Comparison Operators

st commonly used types of relational operators are the comparison operators,
re used t

Less than (<)

The < operator evaluates to true if its first operand is less than its second
operand; otherwise it evaluates to false.

Greater than (>)

The > operator evaluates to true if its first operand is greater than its second
operand; otherwise it evaluates to false.

Less than or equal (<=)

The <= operator evaluates to true if its first operand is less than or equal to its
second operand; otherwise it evaluates to false.

Greater than or equal (>=)

The >= operator evaluates to true if its first operand is greater than or equal to its
second operand; otherwise it evaluates to false.

The operands of these comparison operators may be of any type. Comparison c
performed only on numbers and strings, however, so operands that
strings are converted. Comparison and conversion occur as follows:

• If both operands are numbers, or if both convert to numbers, they are compared
numerically.

• If both operands are strings or convert to

comparison is false. (In JavaScript 1.1, the string-to-number conversion causes
an error instead of yielding NaN.)

r

erted

 is or converts to NaN, the comparison operator always yields
false.

at string comparison is done on a strict character-by-character basis,

t

 <

ng "Zoo" is less than the string "aardvark".

uppercase using String.toLowerCase() or String.toUpperCase().

reater-than-or-equal) operators do not rely on the

han." The one exception is when either operand

and operand that is or can be converted to a string. It
at is an object (or array). It evaluates to true if the

lefthand value is the name of a property of the righthand object. For example:

var point = { x:1, y:1 }; // Define an object
x" in point; // Evaluates to true
y" in point; // Evaluates to true

ord = "z" in point; // Evaluates to false; not a 3-D point
ar ts = "toString" in point; // Inherited property; evaluates to
true

• If an object can be converted to either a number or a string, JavaScript performs
the numerical conversion. This means, for example, that Date objects are
compared numerically, and it is meaningful to compare two dates to see whethe
one is earlier than the other.

• If the operands of the comparison operators cannot both be successfully conv
to numbers or to strings, these operators always return false.

• If either operand

Keep in mind th
using the numerical value of each character from the Unicode encoding. Although in
some cases the Unicode standard allows equivalent strings to be encoded using different
sequences of characters, the JavaScript comparison operators do not detect these
encoding differences; they assume that all strings are expressed in normalized form. Note
in particular that string comparison is case-sensitive, and in the Unicode encoding (a
least for the ASCII subset), all capital letters are "less than" all lowercase letters. This
rule can cause confusing results if you do not expect it. For example, according to the

perator, the strio

For a more robust string comparison algorithm, see the String.localeCompare()
method, which also takes locale-specific definitions of "alphabetical order" into account.
For case-insensitive comparisons, you must first convert the strings to all lowercase or all

The <= (less-than-or-equal) and >= (g
equality or identity operators for determining whether two values are "equal." Instead, the
less-than-or-equal operator is simply defined as "not greater than," and the greater-than-
or-equal operator is defined as "not less t
is (or converts to) NaN, in which case all four comparison operators return false.

5.5.2 The in Operator

The in operator expects a lefth
xpects a righthand operand the

var has_x_coord = "
oord = "var has_y_c

ar has_z_cov
v

5.5.3 The instanceof Operator

The instanceof operator expects a lefthand operand that is an object and a righthand

rwise.
We'll see in Chapter 8

operand that is the name of a class of objects. The operator evaluates to true if the
lefthand object is an instance of the righthand class and evaluates to false othe

 that, in JavaScript, classes of objects are defined by the constructor

d instanceof Date; // Evaluates to true; d was created with Date()
ue; all objects are instances

ray

 the lefthand operand of instanceof is not an object, or if the righthand operand is an
object that is not a constructor function, instanceof returns false. On the other hand, it

 that have special

o the string "hello there":

nd the following lines produce the string "22":

r
is based on the Unicode character encoding used by JavaScript. In this encoding, all

function that is used to initialize them. Thus, the righthand operand of instanceof
should be the name of a constructor function. Note that all objects are instances of
Object. For example:

var d = new Date(); // Create a new object with the Date()
constructor

d instanceof Object; // Evaluates to tr
of Object
d instanceof Number; // Evaluates to false; d is not a Number object

iteral syntax var a = [1, 2, 3]; // Create an array with array l
 ara instanceof Array; // Evaluates to true; a is an

a instanceof Object; // Evaluates to true; all arrays are objects
a instanceof RegExp; // Evaluates to false; arrays are not regular
expressions

If

returns a runtime error if the righthand operand is not an object at all.

5.6 String Operators
As we've discussed in the previous sections, there are several operators
ffects when their operands are strings. e

The + operator concatenates two string operands. That is, it creates a new string that
consists of the first string followed by the second. For example, the following expression
evaluates t

"hello" + " " + "there"

A

a = "2"; b = "2";
c = a + b;

The < , <=, >, and >= operators compare two strings to determine what order they fall in.
The comparison uses alphabetical order. As noted above, however, this alphabetical orde

capital letters in the Latin alphabet come before (are less than) all lowercase letters,
which can cause unexpected results.

r all

mpts to convert it to a number. The following lines illustrate:

"1" + 2 // Concatenation; 2 is converted to "2". Result is "12".

; "one" converted to NaN. Result is
false.

Script 1.1, this causes an error instead of NaN.

Finally, it is important to note that when the + operator is used with strings and numbers,

 + " blind mice"; // Yields "3 blind mice"
t = "blind mice: " + 1 + 2; // Yields "blind mice: 12"

The reason for this surprising difference in behavior is that the + operator works from left

ld strings

rform Boolean algebra. They are often used
in conjunction with comparison operators to express complex comparisons that involve
more than one variable and are frequently used with the if, while, and for statements.

The == and != operators work on strings, but, as we've seen, these operators work fo
data types, and they do not have any special behavior when used with strings.

The + operator is a special one -- it gives priority to string operands over numeric
operands. As noted earlier, if either operand to + is a string (or an object), the other
operand is converted to a string (or both operands are converted to strings) and
concatenated, rather than added. On the other hand, the comparison operators perform
string comparison only if both operands are strings. If only one operand is a string,
JavaScript atte

1 + 2 // Addition. Result is 3.
"1" + "2" // Concatenation. Result is "12".

11 < 3 // Numeric comparison. Result is false.
"11" < "3" // String comparison. Result is true.
"11" < 3 // Numeric comparison; "11" converted to 11. Result is
false.
"one" < 3 // Numeric comparison

 // In Java

it may not be associative. That is, the result may depend on the order in which operations
are performed. This can be seen with examples like these:

s = 1 + 2

to right, unless parentheses change this order. Thus, the last two examples are equivalent
to these:

s = (1 + 2) + "blind mice"; // 1st + yields number; 2nd yields
string
t = ("blind mice: " + 1) + 2; // Both operations yie

5.7 Logical Operators
The logical operators are typically used to pe

5.7.1 Logical AND (&&)

lse.

an

s the value of that
expression.[1]

When used with boolean operands, the && operator performs the Boolean AND operation
on the two values: it returns true if and only if both its first operand and its second
operand are true. If one or both of these operands is false, it returns fa

The actual behavior of this operator is somewhat more complicated. It starts by
evaluating its first operand, the expression on its left. If the value of this expression c
be converted to false (for example, if the left operand evaluates to null, 0, "", or
undefined), the operator returns the value of the lefthand expression. Otherwise, it
evaluates its second operand, the expression on its right, and return

n evaluates to false, the && operator returns false, rather than
returning the unconverted value of the lefthand expression.

 righthand expression. You may occasionally see code that purposely
exploits this feature of the && operator. For example, the following two lines of

(a == b) && stop();

T the programmer intended, since the increment
operator on the righthand side is not evaluated whenever the comparison on the lefthand

&&

[1] In JavaScript 1.0 and JavaScript 1.1, if the lefthand expressio

Note that, depending on the value of the lefthand expression, this operator may or may
not evaluate the

JavaScript code have equivalent effects:

if (a == b) stop();

While some programmers (particularly Perl programmers) find this a natural and useful
programming idiom, I recommend against using it. The fact that the righthand side is not
guaranteed to be evaluated is a frequent source of bugs. Consider the following code, for
example:

if ((a == null) && (b++ > 10)) stop();

his statement probably does not do what

side is false. To avoid this problem, do not use expressions with side effects
(assignments, increments, decrements, and function calls) on the righthand side of
unless you are quite sure you know exactly what you are doing.

Despite the fairly confusing way that this operator actually works, it is easiest, and
perfectly safe, to think of it as merely a Boolean algebra operator. Although it does not
actually return a boolean value, the value it returns can always be converted to a boolean
value.

5.7.2 Logical OR (||)

When used with boolean operands, the || operator performs the Boolean OR operation
on the two values: it returns if either the first operand or the second operand is

ssion on its left. If the value of this expression can be converted to true, it returns
ise, it evaluates its second operand, the

ight, and returns the value of that expression.[2]

true
true, or if both are true. If both operands are false, it returns false.

Although the || operator is most often used simply as a Boolean OR operator, it, like the
&& operator, has more complex behavior. It starts by evaluating its first operand, the
expre
the value of the lefthand expression. Otherw
expression on its r

[2] In JavaScript 1.0 and JavaScript 1.1, if the lefthand expression could be converted to true, the operator returns true rather than
returning th

As with s,
unless you purposely want to m ession may not
be evaluated.

|| operator is used with operands that are not boolean values, it can still
be cons be
conver

5.7.3 Logical NOT (!)

 unary operator; it is placed before a single operand. Its purpose is to
nd. For example, if the variable a has the value true

(or is a q
evaluat
Note th
!!x.

5.8 Bitwise Operators
at all numbers in JavaScript are floating-point, the bitwise operators

require numeric operands that have integer values. They operate on these integer
operand
represe
the ope
perform
The oth bitwise operators are used to shift bits left and right.

In JavaScript 1.0 and JavaScript 1.1, the bitwise operators return NaN if used with
e not integers or that are too large to fit in a 32-bit integer representation.

JavaScript 1.2 and ECMAScript, however, simply coerce the operands to 32-bit integers
by dropping any fractional part of the operand or any bits beyond the 32nd. The shift

e unconverted value of the lefthand expression.

 the && operator, you should avoid righthand operands that include side effect
ake use of the fact that the righthand expr

Even when the
idered a Boolean OR operator, since its return value, whatever the type, can

ted to a boolean value.

The ! operator is a
invert the boolean value of its opera

 value that converts to true), !a has the value false. And if the expression p &&
es to false (or to a value that converts to false), !(p && q) evaluates to true.
at you can convert any value x to a boolean value by applying this operator twice:

Despite the fact th

s using a 32-bit integer representation instead of the equivalent floating-point
ntation. Four of these operators perform Boolean algebra on the individual bits of
rands, behaving as if each bit in each operand were a boolean value and
ing similar operations to those performed by the logical operators we saw earlier.
er three

operands that ar

operato to
a 32-bi
number

If you
integer
operato ry
numbers and are not commonly used in JavaScript programm
are:

Bitwise

Bitwise

The | operator performs a Boolean OR operation on each bit of its integer
rguments. A bit is set in the result if the corresponding bit is set in one or both of

le, 9 | 10 evaluates to 11.

Bitwise

^ operator performs a Boolean exclusive OR operation o
that either operand one is true or operand
is operation's result if a corresponding bit

NOT (~)

~
f0,

rs require a righthand operand between 0 and 31. After converting this operand
t integer as described earlier, they drop any bits beyond the 5th, which yields a
 in the appropriate range.

are not familiar with binary numbers and the binary representation of decimal
s, you can skip the operators described in this section. The purpose of these
rs is not described here; they are needed for low-level manipulation of bina

ing. The bitwise operators

 AND (&)

The & operator performs a Boolean AND operation on each bit of its integer
arguments. A bit is set in the result only if the corresponding bit is set in both
operands. For example, 0x1234 & 0x00FF evaluates to 0x0034.

 OR (|)

a
the operands. For examp

 XOR (^)

The n each bit of its
integer arguments. Exclusive OR means
two is true, but not both. A bit is set in th
is set in one (but not both) of the two operands. For example, 9 ^ 10 evaluates to
3.

itwise B

The ~ operator is a unary operator that appears before its single integer argument.
It operates by reversing all bits in the operand. Because of the way signed integers
are represented in JavaScript, applying the operator to a value is equivalent to
changing its sign and subtracting 1. For example ~0x0f evaluates to 0xffffff
or -16.

Shift left (<<)

The << operator moves all bits in its first operand to the left by the number of
places specified in the second operand, which should be an integer between 0 and
31. For example, in the operation a << 1, the first bit (the ones bit) of a becomes

d bit (the twos bit), the second bit of a becomes the third, etc. A zero is
used for the new first bit, and the value of the 32nd bit is lost. Shifting a value left
by one position is equivalent to multiplying by 2, shifting two positions is

tor moves all bits in its first operand to the right by the number of
ied in the second operand (an integer between and 31). Bits that are

shifted off the right are lost. The bits filled in on the left depend on the sign bit of

, and so on. For example, 7 >> 1
to -4.

e always zero, regardless of the sign of the first operand. For example, -1
-1, but -1 >>> 4 evaluates to 268435455 (0x0fffffff).

5.9 Assignment Operators
Chapter 4

the secon

equivalent to multiplying by 4, etc. For example, 7 << 1 evaluates to 14.

Shift right with sign (>>)

The >> opera
places specif

the original operand, in order to preserve the sign of the result. If the first operand
is positive, the result has zeros placed in the high bits; if the first operand is
negative, the result has ones placed in the high bits. Shifting a value right one
place is equivalent to dividing by 2 (discarding the remainder), shifting right two
places is equivalent to integer division by 4
evaluates to 3 and -7 >> 1 evaluates

Shift right with zero fill (>>>)

The >>> operator is just like the >> operator, except that the bits shifted in on the
left ar
>> 4 evaluates to

As we saw in the discussion of variables in , = is used in JavaScript to assign a

ink of such a line of JavaScript as an expression that can
be evaluated, it is in fact an expression and, technically speaking, is an operator.

pects its lefthand operand to be either a variable, the element of an
. It expects its righthand operand to be an arbitrary value

pe. The value of an assignment expression is the value of the righthand operand.
e effect, the = operator assigns the value on the right to the variable, element, or

e variable, element, or property refer to the

value to a variable. For example:

i = 0

While you might not normally th
=

The = operator ex
array, or a property of an object
of any ty

s a sidA
property on the left, so that future uses of th
value.

Because = is defined as an operator, you can include it in more complex expressions. For
, you can assign and test a value in the same expression with code like this:

If you do this, be sure you are clear on the difference between the = and == operators!

The assignment operator ns that when multiple
assignm an expression, they are evaluated from
you can write code like this to assig alue to multiple va

 j = k = 0;

ember that each assign ression has a valu alue of the righthand
e. So in the above code, of the first assignm htmost one) becomes
 righthand side for the se signment (the middle one), and this value becomes the

hand side for the last (assignment.

 Assignment wi tion

ides the normal = assign erator, JavaScript supports a number of other
ignment operators that p hortcuts by combin ent with some other
ration. For example, the ator performs addition and assignment. The following
ression:

so on. Table 5-2

example

(a = b) == 0

has right-to-left associativity, which mea
ent operators appear in right to left. Thus,

riables: n a single v

i =

Rem
sid

ment exp
the value

e that is the v
ent (the rig

the cond as
right leftmost)

5.9.1 th Opera

Bes ment op
ass
ope

rovide s
 oper

ing assignm
+=

exp

total += sales_tax

is equivalent to this one:

total = total + sales_tax

As you might expect, the += operator works for numbers or strings. For numeric
operands, it performs addition and assignment; for string operands, it performs
concatenation and assignment.

Similar operators include -= , *=, &=, and lists them all. In most cases,
the expression:

op= b
a

where op is an operator, is equivalent to the expression:

a = a
op b

These expressions differ only if a contains side effects such as a function call or an
increment operator.

Table 5-2. Assignment operators

Operator Example Equivalent
+= a += b a = a + b

-= a -= b a = a - b

*= a *= b a = a * b

/= a /= b a = a / b

%= a %= b a = a % b

<<= a <<= b a = a << b

>>= a >>= b a = a >> b

>>>= a >>>= b a = a >>> b

&= a &= b a = a & b

|= a |= b a = a | b

^= a ^= b a = a ^ b

5.10 Miscellaneous Operators

ator is the only ternary operator (three operands) in JavaScript and is
sometimes actually called the ternary operator. This operator is sometimes written ?:,

 operator has three
?, the second goes between the ? and the :, and the

able to) a boolean
y this is the result of a comparison expression. The second and third
have any value. The value returned by the conditional operator depends on

JavaScript supports a number of other miscellaneous operators, described in the
following sections.

5.10.1 The Conditional Operator (?:)

The conditional oper

although it does not appear quite that way in code. Because this
operands, the first goes before the
third goes after the :. It is used like this:

x > 0 ? x*y : -x*y

The first operand of the conditional operator must be (or be convert
value -- usuall

perands may o

the boolean value of the first operand. If that operand is true, the value of the condition
expression is the value of the second operand. If the first operand is

al
f

While you can achieve similar results using the if statement, the ?: operator often

rovides a default value if not:

name : "there");

lse
 greeting += "there";

ore its single operand, which can be of any
type. Its value is a string indica

if

typeof evaluates to "object" when its operand is a Number, String, or Boolean wrapper

re

typeof i
'" + value + "'" : value

f

false, the value o
the conditional expression is the value of the third operand.

provides a handy shortcut. Here is a typical usage, which checks to be sure that a variable
is defined, uses it if so, and p

greeting = "hello " + (username != null ? user

This is equivalent to, but more compact than, the following if statement:

greeting = "hello ";
if (username != null)
 greeting += username;
e

5.10.2 The typeof Operator

typeof is a unary operator that is placed bef
ting the data type of the operand.

The typeof operator evaluates to "number", "string", or "boolean" if its operand is a
number, string, or boolean value. It evaluates to "object" for objects, arrays, and
(surprisingly) null. It evaluates to "function" for function operands and to "undefined"
the operand is undefined.

object. It also evaluates to "object" for Date and RegExp objects. typeof evaluates to an
implementation-dependent value for objects that are not part of core JavaScript but a
provided by the context in which JavaScript is embedded. In client-side JavaScript,
however, typeof typically evaluates to "object" for all client-side objects, just as it does
for all core objects.

You might use the typeof operator in expressions like these:

(typeof value == "string") ? "

Note that you can place parentheses around the operand to typeof, which makes typeo
look like the name of a function rather than an operator keyword:

typeof(i)

Because typeof evaluates to "object" for all object and array types, it is useful only to
distinguish objects from other, primitive types. In order to distinguish one object type
from another, you must use other techniques, such as the

nceof operator or the

constructor property (see the "Object.constructor" entry in the core reference section).

in JavaScript 1.1 an

t.

constructor must be an expression that evaluates to a constructor function, and it
rentheses.

e omitted if there are no arguments in the function call. Here
are some examples using the new operator:

ect of class
Rectangle

t, it invokes the
 the

n

insta

The typeof operator is defined by the ECMAScript v1 specification and is implemented
d later.

5.10.3 The Object Creation Operator (new)

The new operator creates a new object and invokes a constructor function to initialize i
new is a unary operator that appears before a constructor invocation. It has the following
syntax:

new constructor(arguments)

should be followed by zero or more comma-separated arguments enclosed in pa
As a special case, for the new operator only, JavaScript simplifies the grammar by
allowing the parentheses to b

o = new Object; // Optional parentheses omitted here
d = new Date(); // Returns a Date object representing the current
time
c = new Rectangle(3.0, 4.0, 1.5, 2.75); // Create an obj

obj[i] = new constructors[i]();

The new operator first creates a new object with no properties defined; nex
specified constructor function, passing the specified arguments and also passing
newly created object as the value of the keyword. The constructor function cthis an the
use the this keyword to initialize the new object in any way desired. We'll learn more
about the new operator, the this keyword, and constructor functions in Chapter 8.

The new operator can also be used to create arrays, using the new Array() syntax. We'll
ng with objects and arrays in Chapter 8see more about creating and worki and Chapter 9.

or

5.10.4 The delete Operator

delete is a unary operator that attempts to delete the object property, array element,
variable specified as its operand.[3] It returns true if the deletion was successful, and

 and properties can be deleted:
some built-in core and client-side properties are immune from deletion, and user-defined

oked on a

false if the operand could not be deleted. Not all variables

variables declared with the var statement cannot be deleted. If delete is inv

nonexistent property, it returns true. (Surprisingly, the ECMAScript standard specifies
at delete also evaluates to true if the operand is not a property, array element, or

variable.) Here are some examples of the use of this operator:

ript,

 variable; initialize it to an object
delete o.x; // Delete one of the object properties; returns

se

x = 1; // Implicitly declare a variable without var

 // Can delete this kind of variable; returns true

 a deleted property, variable, or array element is not merely set to the
d value. When a property is deleted, the property ceases to exist. See the related
 in Section 4.3.2

th

[3] If you are a C++ programmer, note that the delete operator in JavaScript is nothing like the delete operator in C++. In JavaSc
memory deallocation is handled automatically by garbage collection, and you never have to worry about explicitly freeing up memory. Thus,
there is no need for a C++-style delete to delete entire objects.

var o = {x:1, y:2}; // Define a

true
typeof o.x; // Property does not exist; returns "undefined"
delete o.x; // Delete a nonexistent property; returns true
delete o; // Can't delete a declared variable; returns fal
delete 1; // Can't delete an integer; returns true

keyword
elete x; d
x; // Runtime error: x is not defined

Note that
undefine
discussion .

delete is standardized by the ECMAScript v1 specification and implemented in

It is important to understand that delete affects only properties, not objects referred to

 // hire property is deleted; returns true
document.write(my.fire); // But my.fire still refers to the Date

ator

t appears before its single operand, which may be of any type.
rator is an unusual one: it discards its operand value and returns

this operator is in a client-side javascript:
n expression for its side effects without the

rowser displaying the value of the evaluated expression.

For example, you might use the void operator in an HTML tag as follows:

JavaScript 1.2 and later. Note that the delete operator exists in JavaScript 1.0 and 1.1
but does not actually perform deletion in those versions of the language. Instead, it
merely sets the specified property, variable, or array element to null.

by those properties. Consider the following code:

var my = new Object(); // Create an object named "my"
my.hire = new Date(); // my.hire refers to a Date object
my.fire = my.hire; // my.fire refers to the same object
delete my.hire;

object

5.10.5 The void Oper

void is a unary operator tha
The purpose of this ope
undefined. The most common use for

RL, where it allows you to evaluate aU
b

Open New Window

Another use for void is to purposely generate the undefined value. void is specified by
ECMAScript v1 and implemented in JavaScript 1.1. The global

t v3 and implemented in JavaScript 1.5. Thus, for
backward compatibility, you may find it useful to use an expression like void 0 instead

erator is a simple one. It evaluates its left argument, evaluates its right
argument, and then returns the value of its right argument. Thus, the following line:

cally equiv

nly in a few limited circumstances, primarily when you
al independent expressions with side effects in a situation where

nly a single expression is allowed. In practice, the comma operator is really used only in

undefined property,
however, is specified by ECMAScrip

of relying on the undefined property.

5.10.6 The Comma Operator (,)

The comma op

i=0, j=1, k=2;

evaluates to 2, and is basi alent to:

i = 0;
j = 1;
k = 2;

This strange operator is useful o
need to evaluate sever
o
conjunction with the for loop statement, which we'll see in Chapter 6.

5.10.7 Array and Object Access Operators

As noted briefly in Chapter 3, you can access elements of an array using square bracke
(

ts

 . operator expects an object as its left operand and an identifier (a property name) as
 a string or a variable that contains a

thod, without quotes of any kind.

ocument.lastModified
navigator.appName

[]), and you can access elements of an object using a dot (.). Both [] and . are treated
as operators in JavaScript.

The
its right operand. The right operand should not be
string; it should be the literal name of the property or me
Here are some examples:

d

frames[0].length
document.write("hello world")

If the specified property does not exist in the object, JavaScript does not issue an er
but instead simply returns

ror,

suitable. The . operator is an exception: the righthand operand must be an
identifier. Nothing else is allowed.

o array elements. It also allows access to object properties
aces on the righthand operand. If the first

y, the second operand
 evaluates to an integer.

or example:

rames[1]
ocument.forms[i + j]
ocument.forms[i].elements[j++]

 the first operand to the [] operator is a reference to an object, the second operand
ould be an expression that evaluates to a string that names a property of the object.
ote that in this case, the second operand is a string, not an identifier. It should be a

onstant in quotes or a variable or expression that refers to a string. For example:

ocument["lastModified"]
rames[0]['length']
ata["val" + i]

he [] operator is typically used to access the elements of an array. It is less convenient
an the . operator for accessing properties of an object because of the need to quote the

ame of the property. When an object is used as an associative array, however, and the
roperty names are dynamically generated, the . operator cannot be used; only the []
perator will do. This is commonly the case when you use the for/in loop, which is
troduced in Chapter 6

undefined as the value of the expression.

Most operators allow arbitrary expressions for either operand, as long as the type of the
operand is

The [] operator allows access t
without the restrictions that the . operator pl
operand (which goes before the left bracket) refers to an arra

hich goes between the brackets) should be an expression that(w
F

f
d
d

If
sh
N
c

d
f
d

T
th
n
p
o
in . For example, the following JavaScript code uses a for/in loop
nd the [] operator to print out the names and values of all of the properties in an object
:

or (f in o) {
 document.write('o.' + f + ' = ' + o[f]);
 document.write('
');

.10.8 The Function Call Operator

he () operator is used to invoke functions in JavaScript. This is an unusual operator in
at it does not have a fixed number of operands. The first operand is always the name of

 function or an expression that refers to a function. It is followed by the left parenthesis

a
o

f

}

5

T
th
a

and any number of additional operands, which may be
separated from the next with a comma. The right paren

arbitrary expressions, each
thesis follows the final operand.

The () operator evaluates each of its operands and then invokes the function specified

by the first operand, with the values of the remaining operands passed as arguments. For
example:

document.close()
Math.sin(x)
alert("Welcome " + name)
Date.UTC(2000, 11, 31, 23, 59, 59)
funcs[i].f(funcs[i].args[0], funcs[i].args[1])

Chapter 6. Statements
As we saw in the last chapter, expressions are JavaScript phrases that can be evaluated to

ield a value. Operators within an expression may have side effects, but in general,
expressions don't do anything. To make something happen, you use a JavaScript

escribes the
various statements in JavaScript and explains their syntax. A JavaScript program is

tatements, so once you are familiar with the statements of
vaScript, you can begin writing JavaScript programs.

y

statement, which is akin to a complete sentence or command. This chapter d

simply a collection of s
Ja

Before we examine JavaScript statements, recall from Section 2.4, that statements in
JavaScript are separated from each other with semicolons. If you place each statement on

icolons. Nevertheless,
olons everywhere.

a separate line, however, JavaScript allows you to leave out the sem
it is a good idea to get in the habit of using semic

6.1 Expression Statements
The simplest kinds of statements in JavaScript are expressions that have side effects.
We've seen this sort of statement in Chapter 5. Assignment statements are one major
category of expression statements. For example:

s = "Hello " + name;

e increment and decrement operators, ++ and --, are related to assignment statements.
These have the side effect of changing a variable value, just as if an assignment had been

nts. For example:

o

i *= 3;

Th

performed:

counter++;

The delete operator has the important side effect of deleting an object property. Thus, it
is almost always used as a statement, rather than as part of a larger expression:

delete o.x;

Function calls are another major category of expression stateme

alert("Welcome, " + name);
window.close();

These client-side function calls are expressions, but they also affect the web browser, s
they are statements, too. If a function does not have any side effects, there is no sense in

calling it, unless it is part of an assignment statement. For example, you wouldn't just
compute a cosine and discard the result:

(x);

te that each line of code in each of these examples is terminated with a
micolon.

In Chapter 5

Math.cos

Instead, you'd compute the value and assign it to a variable for future use:

cx = Math.cos(x);

A
se

gain, please no

6.2 Compound Statements
, we saw that the comma operator can be used to combine a number of

k. This is done simply by enclosing
ny number of statements within curly braces. Thus, the following lines act as a single

 JavaScript expects a single statement:

ck acts as a single statement, it does not end with a
semicolon. The prim e statements within the block end in semicolons, but the block

Although combining expressions with the comma operator is an infrequently used
locks is extremely common. As

 a number of JavaScript statements themselves contain
tatements are

pound statements. Formal JavaScript syntax specifies that each of these compound
atements contains a single substatement. Using statement blocks, you can place any

e
ion

 calls a function that causes an uncaught error or

expressions into a single expression. JavaScript also has a way to combine a number of
statements into a single statement, or statement bloc
a
statement and can be used anywhere that

{
 x = Math.PI;
 cx = Math.cos(x);
 alert("cos(" + x + ") = " + cx);
}

Note that although this statement blo
itiv

itself does not.

technique, combining statements into larger statement b
we'll see in the following sections,
statements (just as expressions can contain other expressions); these s
c
st
om

number of statements within this single allowed substatement.

To execute a compound statement, the JavaScript interpreter simply executes the
statements that comprise it one after another, in the order in which they are written.
Normally, the JavaScript interpreter executes all of the statements. In som
circumstances, however, a compound statement may terminate abruptly. This terminat
occurs if the compound statement contains a break , continue, return, or throw
statement, if it causes an error, or if it

throws an uncaught exception. We'll learn more about these abrupt terminations in later

.3 if

lly. This statement has two

this form, expression is evaluated. If the resulting value is true or can be converted
to true, statement is executed. If expression is false or converts to false,

ull) // If username null or undefined,
 username = "John Doe"; // define it

", or NaN, it converts to false,

a
if statement might also look like this:

)) {

ion
rstand.

 statement introduces an else clause that is executed when

sections.

6
The if statement is the fundamental control statement that allows JavaScript to make
decisions, or, more precisely, to execute statements conditiona
forms. The first is:

if (expression)
 statement

In

statement is not executed. For example:

if (username == n is

Or similarly:

// If username is null, undefined, 0, "
// and this statement will assign a new value to it.
f (!username) username = "John Doe"; i

Although they look extraneous, the parentheses around the expression are a required part
of the syntax for the if statement.

As mentioned in the previous section, we can always replace a single statement with
statement block. So the

if ((address == null) || (address == ""
ddress = "undefined"; a

 alert("Please specify a mailing address.");
}

The indentation used in these examples is not mandatory. Extra spaces and tabs are
ignored in JavaScript, and since we used semicolons after all the primitive statements,
these examples could have been written all on one line. Using line breaks and indentat
as shown here, however, makes the code easier to read and unde

The second form of the if
expression is false. Its syntax is:

if (expression)

t1 is

 alert("Hello " + username + "\nWelcome to my home page.");

prompt("Welcome!\n What is your name?");

ls k");

equal j"); // WRONG!!

e statement allowed by the syntax
e outer if statement. Unfortunately, it is not clear (except from the hint given by the

dentation) which if the else goes with. And in this example, the indenting hint is

 equals k");

ite("i doesn't equal j"); // OOPS!

as in most programming languages) is that an else clause is part
example less ambiguous and easier to read,

aintain, and debug, you should use curly braces:

.write("i equals k");

 statement1
else

 statement2

In this form of the statement, expression is evaluated, and if it is true, statemen
executed; otherwise, statement2 is executed. For example:

if (username != null)

else {
 username =
 alert("Hello " + username);
}

When you have nested if statements with else clauses, some caution is required to
ensure that the else clause goes with the appropriate if statement. Consider the
following lines:

i = j = 1;
= 2; k

if (i == j)
 if (j == k)
 document.write("i equa

else
 document.write("i doesn't

In this example, the inner if statement forms the singl
of th
in
wrong, because a JavaScript interpreter actually interprets the previous example as:

if (i == j) {
 if (j == k)
 document.write("i
else
 document.wr
}

The rule in JavaScript (
of the nearest if statement. To make this
understand, m

if (i == j) {
= k) { if (j =

 document
 }

}
else { // What a difference the location of a curly brace makes!

document.write("i doesn't equal j");

e style used in this book, many programmers make a habit of

le

 repeated if/else statements are used:

co ock #1

 if (n == 2) {
 // Execute code block #2

There is nothing special about this code. It is just a series of if statements, where each if

ally

ck #4

 }

Although it is not th
enclosing the bodies of if and else statements (as well as other compound statements,
such as while loops) within curly braces, even when the body consists of only a sing
statement. Doing so consistently can prevent the sort of problem just shown.

6.4 else if
We've seen that the if/else statement is useful for testing a condition and executing one
of two pieces of code, depending on the outcome. But what about when we need to
execute one of many pieces of code? One way to do this is with an else if statement.
else if is not really a JavaScript statement, but simply a frequently used programming
idiom that results when

if (n == 1) {
de bl // Execute

}
lsee

}
else if (n == 3) {
 // Execute code block #3
}
else {
 // If all else fails, execute block #4
}

is part of the else clause of the previous statement. Using the else if idiom is
preferable to, and more legible than, writing these statements out in their syntactic
equivalent fully nested form:

if (n == 1) {
 // Execute code block #1
}
else {
 if (n == 2) {

2 // Execute code block #
 }
 else {
 if (n == 3) {
 // Execute code block #3
 }
 else {
 // If all else fails, execute blo

 }
 }
}

pend

xactly this situation, and it does so more efficiently than repeated if
statements. The JavaScript switch statement is quite similar to the switch statement in

alue and
expression and then looks

he first statement following a special-case

: label. Or, if there is no default: label, it skips the block of code altogether.

 is a confusing statement to explain; its operation becomes much clearer with an

 // Start here if n == 1
 // Execute code block #1.

Execute code block #2.
 break; // Stop here

 // Start here if n == 3
code block #3.
 // Stop here

 // If all else fails...
te code block #4.

6.5 switch
An if statement causes a branch in the flow of a program's execution. You can use
multiple if statements, as in the previous section, to perform a multiway branch.
However, this is not always the best solution, especially when all of the branches de
on the value of a single variable. In this case, it is wasteful to repeatedly check the value
of the same variable in multiple if statements.

The switch statement (implemented in JavaScript 1.2 and standardized by ECMAScript
v3) handles e

Java or C. The switch keyword is followed by an expression and a block of code, much
like the if statement:

switch(expression) {
 statements
}

However, the full syntax of a switch statement is more complex than this. Various
locations in the block of code are labeled with the case keyword followed by a v
a colon. When a switch executes, it computes the value of
for a case label that matches that value. If it finds one, it starts executing the block of
code at the first statement following the case label. If it does not find a case label with a
matching value, it starts execution at t
default

switch
example. The following switch statement is equivalent to the repeated if/else
statements shown in the previous section:

switch(n) {
 case 1:

 break; // Stop here
 case 2: // Start here if n == 2
 //

 case 3:
 // Execute

 break;
 default:
 // Execu
 break; // stop here

}

Note the break keyword used at the end of each case in the code above. The break
emstat ent, described later in this chapter, causes execution to jump to the end of a switch

matches the value of its expression and continues executing statements until it reaches

th
gh to the

in

cimal

 return x.toString(16);

ual

 to be followed by an arbitrary

statement or loop. The case clauses in a switch statement specify only the starting point
of the desired code; they do not specify any ending point. In the absence of break
statements, a switch statement begins executing its block of code at the case label that

the end of the block. On rare occasions, it is useful to write code like this that falls
through from one case label to the next, but 99% of the time you should be careful to end
every case within a switch with a break statement. (When using switch inside a
function, however, you may use a return statement instead of a break statement. Bo
serve to terminate the switch statement and prevent execution from falling throu
next case.)

Here is a more realistic example of the switch statement; it converts a value to a string
a way that depends on the type of the value:

function convert(x) {
 switch(typeof x) {
 case 'number': // Convert the number to a hexade
integer

 case 'string': // Return the string enclosed in quotes
 return '"' + x + '"';
 case 'boolean': // Convert to TRUE or FALSE, in
uppercase
 return x.toString().toUpperCase();
 default: // Convert any other type in the us
way
 return x.toString()
 }
}

Note that in the two previous examples, the case keywords are followed by number and
string literals. This is how the switch statement is most often used in practice, but note
that the ECMAScript v3 standard allows each case
expression.[1] For example:

akes the JavaScript switch statement much different from the switch statement of C, C++, and Java. In those languages, the
ase expressions must be compile-time constants, they must evaluate to integers or other integral types, and they must all evaluate to the

same type.

[1]

c
 This m

case 60*60*24:
case Math.PI:
case n+1:
case a[0]:

The switch statement first evaluates the expression that follows the switch keyword,
then evaluates the case expressions, in the order in which they appear, until it finds a
value that matches.[2] The matching case is determined using the === identity operator, not

e
ript.

at contain side
effects such as function calls or assignments, because not all of the case expressions are

itch statement is executed. When side effects occur only
d predict the correct behavior of your

your case expressions to constant

As explained earlier, if none of the case expressions match the switch expression, the

arlier

is implemented in JavaScript 1.2, but it does not fully conform to
the ECMAScript specification. In JavaScript 1.2, case expressions must be literals or

 that do not involve any variables or method calls. Furthermore,
 allows the switch and case expressions to be of any type,

6.6 while
the basic control statement that allows JavaScript to make

, the while statement is the basic statement that allows JavaScript to perform

the statement that forms the
 expression is evaluated again. Again, if the value of
t moves on to the next statement in the program;

le continues until expression evaluates

the == equality operator, so the expressions must match without any type conversion.

[2] This means that the JavaScript switch statement is not nearly as efficient as the switch statement in C, C++, and Java. Since th
case expressions in those languages are compile-time constants, they never need to be evaluated at runtime as they are in JavaSc
Furthermore, since the case expressions are integral values in C, C++, and Java, the switch statement can often be implemented using a
highly efficient "jump table."

Note that it is not good programming practice to use case expressions th

evaluated each time the sw
sometimes, it can be difficult to understand an

fest course is simply to limit program. The sa
ressions. exp

switch statement begins executing its body at the statement labeled default:. If there is
no default: label, the switch statement skips its body altogether. Note that in the e
examples, the default: label appears at the end of the switch body, following all the
case labels. This is a logical and common place for it, but it can actually appear
anywhere within the body of the statement.

The switch statement

compile-time constants
although ECMAScript
JavaScript 1.2 and JavaScript 1.3 require that the expressions evaluate to primitive
numbers, strings, or boolean values.

Just as the if statement is
ecisionsd

repetitive actions. It has the following syntax:

while (expression)
 statement

The while statement works by first evaluating expression. If it is false, JavaScript
moves on to the next statement in the program. If it is true,
body of the loop is executed and

cripexpression is false, JavaS
otherwise, it executes statement again. This cyc

to , at which pointfalse the while statement ends and JavaScript moves on. Note that
e(true).

orm exactly the same operation over and over
n. In almost every loop, one or more variables change with each iteration of the loop.

ince the variables change, the actions performed by executing statement may differ
each time through the loop. Furthermore, if the changing variable or variables are

h

< 10) {
 document.write(count + "
");

As you can see, the variable count starts off at 0 in this example and is incremented each
tim f the loop runs. Once the loop has executed 10 times, the expression
be (i.e., the variable count is no longer less than 10), the while statement

The loop is much like a loop, except that the loop expression is tested at

on);

do/while statement is implemented in JavaScript 1.2 and later and standardized by
ECMAScript v3.

while loop is less commonly used than its while cousin. This is because, in
practice, it is somewhat uncommon to encounter a situation in which you are always sure

Array(a) {
h == 0)
t.write("Empty Array");

you can create an infinite loop with the syntax whil

Usually, you do not want JavaScript to perf
agai
S

involved in expression, the value of the expression may be different each time throug
the loop. This is important -- otherwise, an expression that starts off true would never
change and the loop would never end! Here is an example while loop:

var count = 0;
while (count

 count++;
}

e the body o
comes false

finishes, and JavaScript can move on to the next statement in the program. Most loops
have a counter variable like count. The variable names i, j, and k are commonly used as
a loop counters, though you should use more descriptive names if it makes your code
easier to understand.

6.7 do/while
do/while while

the bottom of the loop rather than at the top. This means that the body of the loop is
always executed at least once. The syntax is:

do
 statement
while (expressi

The

The do/

that you want a loop to execute at least once. For example:

function print
 if (a.lengt
 documen
 else {

 var i = 0;
 do {
 document.write(a[i] + "
");

ile
)

e loop condition, rather than simply with a curly brace that marks the end of
the loop body.

 the behavior of the continue statement (see Section

 } while (++i < a.length);
 }
}

There are a couple of differences between the do/while loop and the ordinary wh
loop. First, the do loop requires both the do keyword (to mark the beginning of the loop
and the while keyword (to mark the end and introduce the loop condition). Also, unlike
the while loop, the do loop is terminated with a semicolon. This is because the do loop
ends with th

In JavaScript 1.2, there is a bug in
6.12) when it is used inside a loop. For this reason, you should avoid the use of

1.2.

he
ps

kind. This variable is initialized before the loop starts and is tested as part of the

e is

 the three crucial manipulations of a loop
variable; the statement makes these three steps an explicit part of the loop syntax.

a for loop is doing and prevents
ng to initialize or increment the loop variable. The syntax of the

for(; test ; increment)

 loop does is to show the equivalent while

do/while
 within statements in JavaScript continue do/while

6.8 for
The for statement provides a looping construct that is often more convenient than t
while statement. The for statement takes advantage of a pattern common to most loo
(including the earlier while loop example). Most loops have a counter variable of some

expression evaluated before each iteration of the loop. Finally, the counter variabl
incremented or otherwise updated at the end of the loop body, just before expression is
evaluated again.

The initialization, the test, and the update are
for

This makes it especially easy to understand what
mistakes such as forgetti
for statement is:

initialize
 statement

The simplest way to explain what this for
loop:[3]

[3] As we will see when we consider the continue statement, this while loop is not an exact equivalent to the for loop.

initialize;
while(test) {
 statement
 increment;

}

In other words, the initialize expression is evaluated once, before the loop begins. To
be useful, this is an expression with side effects (usually an assignment). JavaScript als
allows

o

be useful. Generall it is an assignment expression or it uses the ++ or --
operators.

 counts from 0 to 9:

or(var count = 0 ; count < 10 ; count++)

the for statement itself simplifies the body of the loop to a
e curly braces to produce a statement block.

 complex than these simple examples, of course, and
tion of the loop. This situation is the

to combine multiple initialization and increment expressions into a single expression

.9 for/in

ble,

initialize to be a var variable declaration statement, so that you can declare
and initialize a loop counter at the same time. The test expression is evaluated before
each iteration and controls whether the body of the loop is executed. If the test
expression is true, the statement that is the body of the loop is executed. Finally, the
increment expression is evaluated. Again, this must be an expression with side effects in
order to y, either

The example while loop of the previous section can be rewritten as the following for
p, whichloo

f
 document.write(count + "
");

Notice that this syntax places all the important information about the loop variable on a
single line, which makes it clear how the loop executes. Also note that placing the
increment expression in
single statement; we don't even need to us

Loops can become a lot more
sometimes multiple variables change with each itera

nly place that the comma operator is commonly used in JavaScript -- it provides a way o

suitable for use in a for loop. For example:

for(i = 0, j = 10 ; i < 10 ; i++, j--)
 sum += i * j;

6
The for keyword is used in two ways in JavaScript. We've just seen how it is used in the
for loop. It is also used in the for/in statement. This statement is a somewhat different
kind of loop with the following syntax:

for (variable in object)
 statement

variable should be either the name of a variable, a var statement declaring a varia
an element of an array, or a property of an object (i.e., it should be something suitable as
the leftthand side of an assignment expression). object is the name of an object or an

expression that evaluates to an object. As usual, statement is the statement or statement
block that forms the body of the loop.

You can loop through the elements of an array by simply incrementing an index variable
ile or for loop. The for/in statement provides a way to loop

 of an object. The body of the for/in loop is executed once for
 the

[]

for/in lue of each property of an

for (var prop in my_object) {

Note that the variable in the for/in loop may be an arbitrary expression, as long as it
o something suitable for the lefthand side of an assignment. This expression is

op, which means that it may evaluate differently each
code like the following to copy the names of all object

erties into an array:

JavaScript arrays are simply a specialized kind of object. Therefore, the for/in loop
exes as well as object properties. For example, following the

 with this line enumerates the array "properties" 0, 1, and 2:

n loop does not specify the order in which the properties of an object are
ssigned to the variable. There is no way to tell what the order will be in advance, and the

ew properties, whether or not those

 loop does not actually loop through all possible properties of all objects. In
e object properties are flagged to be read-only or permanent
properties are flagged to be nonenumerable. These properties are

erated by the for/in loop. While all user-defined properties are enumerated,

each time through a wh
through the properties
each property of object. Before the body of the loop is executed, the name of one of
object's properties is assigned to variable, as a string. Within the body of the loop, you
can use this variable to look up the value of the object's property with the operator.
For example, the following loop prints the name and va
object:

 document.write("name: " + prop + "; value: " + my_object[prop],
"
");
}

evaluates t
evaluated each time through the lo

. For example, you could use time
ropp

var o = {x:1, y:2, z:3};
var a = new Array();
var i = 0;
for(a[i++] in o) /* empty loop body */;

enumerates array ind
previous code block

for(i in a) alert(i);

T
a

he for/i

behavior may differ between implementations or versions of JavaScript. If the body of a
for/in loop deletes a property that has not yet been enumerated, that property will not be
enumerated. If the body of the loop defines n
properties will be enumerated by the loop is implementation-dependent.

The for/in
the same way that som
nondeletable), certain (

not enum

many built-in properties, including all built-in methods, are not enumerated. As we'll see
in Chapter 8, objects can inherit properties from other objects. Inherited properties that
are user-defined are also enumerated by the for/in loop.

bel

e name as a variable or function. Here is an
example of a labeled statement:

d for/in. By giving a loop a
exit a single iteration of the

1 break

ses a loop or switch to exit, this form of the break statement is legal only
ts.

e

6.10 Labels
The case and default: labels used in conjunction with the switch statement are a
special case of a more general label statement. In JavaScript 1.2, any statement may be
labeled by preceding it with an identifier name and a colon:

identifier: statement

The identifier can be any legal JavaScript identifier that is not a reserved word. La
names are distinct from variable and function names, so you do not need to worry about
name collisions if you give a label the sam

while

parser:
 while(token != null) {
 // Code omitted here
}

By labeling a statement, you give it a name that you can use to refer to it elsewhere in
your program. You can label any statement, although the only statements that are
commonly labeled are loops: while, do/while, for, an
name, you can use break and continue to exit the loop or to
loop.

6.1
The break statement causes the innermost enclosing loop or a switch statement to exit
immediately. Its syntax is simple:

break;

Because it cau
if it appears within one of these statemen

ECMAScript v3 and JavaScript 1.2 allow the break keyword to be followed by the nam
of a label:

break labelname;

Note that labelname is simply an identifier; it is not followed by a colon, as it would be
when defining a labeled statement.

When break is used with a label, it jumps to the end of, or terminates, the named
statement, which may be any enclosing statement. The named statement need not be a

in a

if statement, for exam of
statements grouped within curly braces, for the sole purpose of naming the block with a

As discussed in Chapter 2

loop or switch; a break statement used with a label need not even be contained with
loop or switch. The only restriction on the label of the break statement is that it name an
enclosing statement. The label can name an ple, or even a block

label.

, a newline is not allowed between the break keyword and the

 semicolons. If you break a line of code between the break keyword and the
following label, JavaScript assumes you meant to use the simple, unlabeled form of the

e already seen examples of the

ment some of these conditions with break statements, rather than trying to

es naturally when it reaches the end of the array; it terminates with a break
statement if it finds what it is

for(i
 f

}

You ne
or swit t one.

The l
can g

outerl
 for(var i = 0; i < 10; i++) {

labelname. This is an oddity of JavaScript syntax caused by its automatic insertion of
omitted

statement and adds a semicolon for you.

We'v break statement within a switch statement. In loops,
it is typically used to exit prematurely when, for whatever reason, there is no longer any
need to complete the loop. When a loop has complex termination conditions, it is often
easier to imple
express them all in a single loop expression.

The following code searches the elements of an array for a particular value. The loop
terminat

 looking for in the array:

= 0; i < a.length; i++) {
 i (a[i] == target)

 break;

ed the labeled form of the break statement only when you are using nested loops
ch statements and need to break out of a statement that is not the innermos

 fo lowing example shows labeled for loops and labeled break statements. See if you
ut whatfi ure o its output will be:

oop:

 innerloop:
 for(var j = 0; j < 10; j++) {
 if (j > 3) break; // Quit the innermost loop
 if (i == 2) break innerloop; // Do the same thing
 if (i == 4) break outerloop; // Quit the outer loop
 document.write("i = " + i + " j = " + j + "
");
 }

 }
 document.write("FINAL i = " + i + " j = " + j + "
");

xiting a loop,
continue continue statement's syntax is

st as simple as the break statement's:

nd JavaScript 1.2, the continue statement can also b
label:

lname;

ement, in both its labeled and unlabeled forms, can be used only within
,

f

 a while loop, the specified expression at the beginning of the loop is tested
and if it's true, the loop body is executed starting from the top.

 loop, execution skips to the bottom of the loop, where the loop
restarting the loop at the top. Note, however, that

tinue statement to jump directly
to the top of a do/while loop without testing the loop condition. Therefore, if you

p.

 assigned

he continue statement in the while and for loops --
ent
op,

 the behavior of the for loop in terms of an equivalent while loop. Because
not possible to

6.12 continue
The continue statement is

ever, restarts a loop in a new iteration. The
similar to the break statement. Instead of e

how
ju

continue;

In ECMAScript v3 a e used with a

continue labe

The continue stat
the body of a while do/while, for, or for/in loop. Using it anywhere else causes a
yntax error. s

When the continue statement is executed, the current iteration of the enclosing loop is
terminated and the next iteration begins. This means different things for different types o
loops:

• In
again,

• In a do/while
condition is tested again before
JavaScript 1.2 contains a bug that causes the con

plan to use a continue statement in a loop, you should avoid the do/while loo
This is not a serious problem, however, because you can always replace a
do/while loop with an equivalent while loop.

• In a for loop, the increment expression is evaluated and the test expression is
tested again to determine if another iteration should be done.

• In a for/in loop, the loop starts over with the next property name being
to the specified variable.

Note the difference in behavior of t
a while loop returns directly to its condition, but a for loop first evaluates its increm
expression and then returns to its condition. Previously, in the discussion of the for lo
I explained
the continue statement behaves differently for these two loops, it is
perfectly simulate a for loop with a while loop.

The following example shows an unlabeled continue statement being used to exit the
urrent iteration of a loop when an error occurs:

[i] == null)
 continue; // Can't proceed with undefined data

;

Like break statement, the continue statement can be used in its labeled form within
ately enclosing loop. Also,

ement, line breaks are not allowed between the continue statement
 its labelname.

 of

var x = 2.34, y = Math.cos(0.75), r, theta;

by creating a property with that name
ation does not appear

hin a function body, in the global object. The property or properties created by a var
e operator. Note that enclosing a

c

for(i = 0; i < data.length; i++) {
 if (data

 total += data[i]
}

 the
nested loops, when the loop to be restarted is not the immedi
like the break stat
and

6.13 var
The var statement allows you to explicitly declare a variable or variables. The syntax
this statement is:

var name_1 [= value_1] [,..., name_n [= value_n]]

The var keyword is followed by a comma-separated list of variables to declare; each
variable in the list may optionally have an initializer expression that specifies its initial
value. For example:

var i;
var j = 0;
var p, q;
var greeting = "hello" + name;

The statement defines evar ach named variable
her in the call object of the enclosing function or, if the declareit

itw
statement cannot be deleted with th delete var
statement in a with statement (see Section 6.18) does not change its behavior.

If no initial value is specified for a variable with the var statement, the va
.

riable is defined

te that the var statement can also appear as part of the for and for/in loops. For
xample:

but its initial value is undefined

N
e

o

for(var i = 0; i < 10; i++) document.write(i, "
");
for(var i = 0, j=10; i < 10; i++,j--) document.write(i*j, "
");

for(var i in o) document.write(i, "
");

Chapter 4 contains much more information on JavaScript variables and variable
declarations.

6.14 function
The function statement defines a JavaScript function. It has the following syntax:

function

 statements

 a
expression. The function name is followed by a comma-separated list of

ents, contained
.

e compiled and associated with the new function object for execution
hen the function is invoked with the () function call operator. Note that the curly

y

ect and stores that object in a newly
ed funcname. Here are some example function definitions:

function welcome() { alert("Welcome to my home page!"); }

(x*x + y*y); // return is documented below

function factorial(n) { // A recursive function

so be nested
 the "top level" of those functions; that is,

funcname([arg1 [,arg2 [..., argn]]]) {

}

funcname is the name of the function being defined. This must be an identifier, not
string or an
argument names in parentheses. These identifiers can be used within the body of the
function to refer to the argument values passed when the function is invoked.

The body of the function is composed of any number of JavaScript statem
within curly braces. These statements are not executed when the function is defined
nstead, they arI

w
braces are a required part of the function statement. Unlike statement blocks used with
while loops and other statements, a function body requires curly braces, even if the bod
consists of only a single statement.

A function definition creates a new function obj
created property nam

function print(msg) {
 document.write(msg, "
");
}

function hypotenuse(x, y) {
 return Math.sqrt
 }

 if (n <= 1) return 1;
 return n * factorial(n - 1);
}

Function definitions usually appear in top-level JavaScript code. They may al
within other function definitions, but only at

function definitions may not appear within if statements, while loops, or any other
statements.

tatements cause
dynamic behavior in a JavaScript program, while function definitions describe the static

xecuted at runtime, but functions are defined
ly run. When the
 stores (without

y of the function. Then it defines a
sted in another function;

therwise, in the global object) with the same name as the function to hold the function.

alert(f(4)); // Displays 16. f() can be called before it is

tion f before

 // of the lines above are executed.

alert(f); // Displays 0. f() has been overwritten by the

Technically speaking, the function statement is not a statement. S

structure of a program. Statements are e
when JavaScript code is parsed, or compiled, before it is actual

ion definition, it parses andJavaScript parser encounters a funct
executing) the statements that comprise the bod

perty (in the call object if the function definition is nepro
o

The fact that function definitions occur at parse time rather than at runtime causes some
surprising effects. Consider the following code:

defined.
var f = 0; // This statement overwrites the property f.
function f(x) { // This "statement" defines the func
either
 return x*x;
}

variable f.

These unusual results occur because function definition occurs at a different time than
variable definition. Fortunately, these situations do not arise very often.

We'll learn more about functions in Chapter 7.

6.15 return
As you'll recall, invoking a function with the () operator is an expression. All
expressions have values; the return statement is used to specify the value returned by a

e value of the function invocation expression. The syntax of the
eturn statement is:

rror
hen the return statem expression is

evaluated and returned as the value of the function. Execution of the function stops when
ed, even if there are other statements remaining in the

function. This value is th
r

return expression;

A return statement may appear only within the body of a function. It is a syntax e
for it to appear anywhere else. W ent is executed,

the return statement is execut
function body. The return statement can be used to return a value like this:

function square(x) { return x*x; }

T
e

he return statement may also be used without an expression to simply terminate
xecution of the function without returning a value. For example:

6.16 throw
A at some sort of exceptional condition or error has

function display_object(obj) {
 // First make sure our argument is valid
 // Skip the rest of the function if it is not
 if (obj == null) return;
 // Rest of function goes here...
}

If a function executes a return statement with no expression, or if it returns because it
reaches the end of the function body, the value of the function call expression is
undefined.

Because of JavaScript's automatic semicolon insertion, you may not include a line break
between the return keyword and the expression that follows it.

n exception is a signal that indicates th
occurred. To throw an exception is to signal such an error or exceptional condition. To
catch an exception is to handle it -- to take whatever actions are necessary or appropriate
to recover from the exception. In JavaScript, exceptions are thrown whenever a runtime
error occurs and whenever the program explicitly throws one using the throw statement.
Exceptions are caught with the try/catch/finally statement, which is described in the
next section.[4]

[4] The JavaScript throw and try/catch/finally statements are similar to but not exactly the same as the corresponding
statements in C++ and Java.

The throw statement has the following syntax:

expressionthrow ;

throw statement to throw an
n:

turn normally

expression may evaluate to a value of any type. Commonly, however, it is an Error
object or an instance of one of the subclasses of Error. It can also be useful to throw a
string that contains an error message, or a numeric value that represents some sort of
error code. Here is some example code that uses the
exceptio

function factorial(x) {
 // If the input argument is invalid, thrown an exception!

t be negative"); if (x < 0) throw new Error("x must no
 // Otherwise, compute a value and re

 for(var f = 1; x > 1; f *= x, x--) /* empty */ ;

sing the catch clause of the try/catch/finally statement, which is described

lock of
r

 the code that
re

The throw statement is standardized by ECMAScript v3 and implemented in JavaScript

6.17 try/catch/finally
chanism. The

e
ed by a catch clause, which is a block of statements that
ccurs anywhere within the try block. The catch clause

ntaining cleanup code that is guaranteed to be

ocks.

d end with curly braces. These are a
 syntax and cannot be omitted, even if the clause contains only a

ngle statement. Like the throw statement, the try/catch/finally statement is
standardized by ECMAScript v3 and implemented in JavaScript 1.4.

signs whatever exception
object or value was thrown to this variable:

ement, or indirectly, by calling
 // a method that throws an exception.
}

 return f;
}

When an exception is thrown, the JavaScript interpreter immediately stops normal
program execution and jumps to the nearest exception handler. Exception handlers are

tten uwri
in the next section. If the block of code in which the exception was thrown does not have
an associated catch clause, the interpreter checks the next highest enclosing b
code to see if it has an exception handler associated with it. This continues until a handle

rown in a function that does not contain a is found. If an exception is th
 statement to handle it, the exception propagates up totry/catch/finally

invoked the function. In this way, exceptions propagate up through the lexical structu
nd, theof JavaScript methods and up the call stack. If no exception handler is ever fou

ption is treated as an error and is reported to the user. exce

1.4. The Error class and its subclasses are also part of ECMAScript v3, but they are not
implemented until JavaScript 1.5.

The try/catch/finally statement is JavaScript's exception-handling me
 clause of this statement simply defines the block of code whose exceptions are to btry

handled. The try block is follow
are invoked when an exception o
is followed by a finally block co
executed, regardless of what happens in the try block. Both the catch and finally

mpanied by at least one of these blblocks are optional, but a try block must be acco
d finally blocks all begin anThe try, catch, an

ired part of therequ
si

The following code illustrates the syntax and purpose of the try/catch/finally
statement. In particular, note that the catch keyword is followed by an identifier in
parentheses. This identifier is like a function argument. It names a local variable that
exists only within the body of the catch block. JavaScript as

try {
 // Normally, this code runs from the top of the block to the bottom
 // without problems. But it can sometimes throw an exception,
 // either directly, with a throw stat

catch (e) {
 // The statements in this block are executed if, and only if, the try
 // block throws an exception. These statements can use the local
variable
 // e to refer to the Error object or other value that was thrown.
 // This block may handle the exception somehow, or it may ignore the
 // exception by doing nothing, or it may rethrow the exception with

ck
 // 2) because of a break, continue, or return statement

ned in the previous section and the client-side JavaScript methods prompt()

the result

ex) { // If the user's input was not valid, we end up here
// Tell the user what the error is

finally
ecuted, regardless of how the code in the try block completes. It is
ean up after the code in the try clause.

In the normal case, control reaches the end of the block and then proceeds to the

lock is executed
before control transfers to its new destination.

throw.
}
finally {
 // This block contains statements that are always executed,
regardless of
 // what happens in the try block. They are executed whether the try
 // block terminates:
 // 1) normally, after reaching the bottom of the blo

 // 3) with an exception that is handled by a catch clause above
 // 4) with an uncaught exception that is still propagating
}

Here is a more realistic example of the try/catch statement. It uses the factorial()
method defi
and alert() for input and output:

try {
 // Ask the user to enter a number
 var n = prompt("Please enter a positive integer", "");
 // Compute the factorial of the number, assuming that the user's
 // input is valid

r f = factorial(n); va
 // Display
 alert(n + "! = " + f);
}

ch (cat

 alert(ex);
}

This example is a try/catch statement with no finally clause. Although finally is
not used as often as catch, it can often be useful. However, its behavior requires
additional explanation. The clause is guaranteed to be executed if any portion of
the try block is ex
generally used to cl

try
finally block, which performs any necessary cleanup. If control leaves the try block
because of a return, continue, or break statement, the finally b

If an exception occurs in the try block and there is an associated catch block to handle
the exception, control transfers first to the catch block and then to the finally block. If
there is no local block to handle the exception, control transfers first to the

ontaining catch clause that can
andle the exception.

an exception, the pending control transfer is
ple, if a finally clause throws

cess of being
urns normally,

hrown and has not yet been handled.

finally can be used together without a catch clause. In this case, the finally
lock is simply cleanup code that is guaranteed to be executed, regardless of any break,

e
e

t a

 finally {
 if we used continue above.

 }

6.18 with

catch
inally block and then propagates up to the nearest cf

h

If a finally block itself transfers control with a return, continue, break, or throw
statement, or by calling a method that throws
abandoned and this new transfer is processed. For exam
an exception, that exception replaces any exception that was in the pro

e issues a return statement, the method retthrown. If a finally claus
even if an exception has been t

t
b
ry and

continue, or return statements within the try clause. For example, the following cod
uses a try/finally statement to ensure that a loop counter variable is incremented at th
end of each iteration, even when an iteration terminates abruptly because of a continue
statement:

var i = 0, total = 0;
while(i < a.length) {
 try {
 if ((typeof a[i] != "number") || isNaN(a[i])) // If it is no
number,
 continue; // go on to the next iteration of the loop.
 total += a[i]; // Otherwise, add the number to the total.
 }

 i++; // Always increment i, even

}

In Chapter 4, we discussed varia
a

ble scope and the scope chain -- a list of objects that are
riable name resolution. The with statement is used to

n. It has the following syntax:

 statement

is statement effectively adds object to the front of the scope chain, executes
tatement, and then restores the scope chain to its original state.

ide
. For

searched in order, to perform v
temporarily modify the scope chai

with (object)

Th
s

In practice, you can use the with statement to save yourself a lot of typing. In client-s
JavaScript, for example, it is common to work with deeply nested object hierarchies

instance, you may have to type expressions like this one to access elements of an HTML
form:

frames[1].document.forms[0].address.value

If you need to access this form a number of times, you can use the statement to add

 // Access form elements directly here. For example:

refix each
t object is temporarily
cript needs to resolve an

Despite its occasional convenience, the use of the statement is frowned upon.
wly

ore, function
definitions and variable initializations within the body of a with statement can have
surprising and counterintuitive behavior.[5]

with
the form to the scope chain:

with(frames[1].document.forms[0]) {

 name.value = "";
 address.value = "";
 email.value = "";
}

This reduces the amount of typing you have to do -- you no longer need to p
form property name with frames[1].document.forms[0]. Tha
part of the scope chain and is automatically searched when JavaS
identifier like address.

with
JavaScript code that uses with is difficult to optimize and may therefore run more slo
than the equivalent code written without the with statement. Furtherm

 For these reasons, it is recommended that you
avoid the with statem

 reasons behind plicated to explain here.

t the legitimate w
e could rew previous e ple as follo

rm = t.forms[0]
ame. = "";

ne final leg l statement in JavaScript is the e oks like this:

pty statement obviously has no effect and performs no action. You
ink e would be little reason to ever atement, but the empty

ent.

[5] This behavior, and the it, are too com

Note tha re are other, perfectly
rite the xam

ays to save yourself typing. For instance,
ws: w

var fo
orm.n

 frames[1].documen
alue

;
f
form.address.value = "";

v

form.email.value = "";

6.19 The Empty Statement
O a mpty statement. It lo

;

Executing the em
might th ther use such a st

statement is occasionally useful when you want to create a loop that has an empty body.
For example:

// Initialize an array a
or(i=0; i < a.length; a[i++] = 0) ;

that the lusion of a se ol thesis of a for loop,
hile loop, an cause frustrati lt to detect. For

example, the following code probably does not do what the author intended:

=); // Oops!
 o = nu l; // and this line is always executed.

n statement, it is a good idea to comment your code
t you are doing it on purpose. For example:

for(i=0; i < a.length; a[i++] = 0) /* Empty */ ;

u avaScri
This chapter introduced each of the statements of the JavaScript language. Table 6-1

f

Note accidental inc mic on after the right paren
ng bugs that are difficuw or if statement c

i

f ((a = 0) || (b == 0) This line does nothing...

l

When you i
n a way tha

tentionally use the empty
i t makes it clear tha

6.20 S mmary of J pt Statements

izes syntax

able 6-1. J Script

summar these statements, listing the and purpose of each.

T ava statement syntax

Statement Syntax Purpose

break

ak;
reak labelname;

switch
ment named by

label.

bre
b

Exit from the innermost loop or
statement or from the state

case

ase expression: switch
statement.

c

Label a statement within a

continue Restart the innermost loop or the loop
named by label.

continue;
continue labelname;

default

tement within a
switch statement.

default:

Label the default sta

do/while

 statement
An alternative to the while loop.

d

o

while (expression);

empty Do nothing. ;

Table 6-1. JavaScript statement syntax

Statement Syntax Purpose

for
(initialize ; test ;

ncrement)
An easy-to-use loop.

f
i
or

 statement

for/in for (variable in object)
 statement

Loop through the properties of an object.

function

function
funcname([arg1[...,
argn]]) {
 statements
}

Declare a function.

if/else
if (expression)
 statement1
[else statement2]

Conditionally execute code.

label identifier: statement
 Give statement the name identifier.

return return [expression];

Return from a function or return the value
of expression from a function.

switch
switch (expression) {
 statements
}

Multiway branch to statements labeled
with case or default: .

throw throw expression;
 Throw an exception.

try

try {
 statements
}
catch (identifier) {
 statements
}
finally {
 statements
}

Catch an exception.

var
var name_1 [= value_1]
[..., name_n [=
value_n]];

Declare and initialize variables.

Table 6-1. JavaScript statement syntax

Statement Syntax Purpose

while

while (expression)
 statement

A basic loop construct.

with

with (object)
 statement

Extend the scope chain. (Deprecated.)

Chapter 7. Functions
rt of the JavaScript language. This chapter

eral points of view. First, we discuss functions from the

seful programming techniques that are
ariable
elated

 that accept an arbitrary number of arguments.

 on defining and invoking user-defined JavaScript functions. It is
 supports quite a few built-in functions, such

t() method of the Array class. Client-side
aScript defines others, such as document.write() and alert(). Built-in functions

 JavaScript can be used in exactly the same ways as user-defined functions. You can

Functions are an important and complex pa
examines functions from sev
syntactic standpoint, explaining how they are defined and invoked. Second, we cover

ctions as a data type, with examples of the ufun
made possible by treating functions as data. Finally, we consider the topic of v
scope within the body of a function and examine some of the useful function-r
properties that are available to an executing function. This includes a discussion of how
to write JavaScript functions

This chapter focuses
also important to remember that JavaScript
as eval(), parseInt(), and the sor
J
in
av

find more information about the built-in functions mentioned here in the core and client-
side reference sections of this book.

Functions and objects are intertwined in JavaScript. For this reason, I'll defer discussion
of some features of functions until Chapter 8.

.1 Defining and Invoking Functions
As we saw in Chapter 6, the most common way to define a function is with the functio
tatement. This statement consists of the function keyword, followed by:

n
s

• The name of the function
• An optional comma-separated list of parameter names in parentheses
• The JavaScript statements that comprise the body of the function, contained

within curly braces

Example 7-1 shows the definitions
short and simple, they all contain each of the

 of several functions. Although these functions are
elements I just listed. Note that functions

may be defined to expect varying numbers of arguments and that they may or may not
contain a return statement. The return statement was introduced in Chapter 6; it causes
the function to stop executing and to return the value of its expression (if any) to the
caller. If a function does not contain a

{

return statement, it simply executes each
statement in the function body and returns the undefined value to the caller.

Example 7-1. Defining JavaScript functions
// A shortcut function, sometimes useful instead of document.write()
// This function has no return statement, so it returns no value
function print(msg)

 document.write(msg, "
");
}
// A function that computes and returns the distance between two point
function distance(x1, y1, x2, y2)
{

s

 var dx = x2 - x1;

 + dy*dy);

s less

return x * factorial(x-1);

n

 var dy = y2 - y1;
 return Math.sqrt(dx*dx
}
// A recursive function (one that calls itself) that computes
factorials
// Recall that x! is the product of x and all positive integer
than it
function factorial(x)
{
 if (x <= 1)

 return 1;

}

Once a function has been defined, it may be invoked with the () operator, introduced i
Chapter 5. Recall that the parentheses appear after the name of the function and that an
optional comma-separated list of argument values (or expressions) appears within the
parentheses. The functions defined in

Example 7-1 could be invoked with code lik
following:

e the

print("Hello, " + name);

print("The probability of that is: " + factorial(39)/factorial(52));

unction returns.

function parameters, and JavaScript does not check whether you have passed the type of
st it

 JavaScript does not check whether you have passed
the correct number of arguments, either. If you pass more arguments than the function

. If you pass fewer than expected, some of the
arameters are given the undefined value -- which, in many circumstances, causes your

function to behave incorrectly. Later in this chapter, we'll see a technique you can use to

print("Welcome to my home page!");
total_dist = distance(0,0,2,1) + distance(2,1,3,5);

When you invoke a function, each of the expressions you specify between the
parentheses is evaluated and the resulting value is used as an argument of the function.
These values are assigned to the parameters named when the function was defined, and
the function operates on its parameters by referring to them by name. Note that these
parameter variables are defined only while the function is being executed; they do not
persist once the f

Since JavaScript is an untyped language, you are not expected to specify a data type for

data that the function expects. If the data type of an argument is important, you can te
yourself with the typeof operator.

expects, the extra values are simply ignored
p

test whether the correct number of arguments have been passed to a function.

Note that the print() function does not contain a return statement, so it always
returns the undefined value and cannot meaningfully be used as part of a larger
expression. The distance() and factorial() functions, on the other hand, can
invoked as parts of larger expression

 be
s, as was shown in the previous examples.

 1.2 allow functions to be
defined only in top-level global code. JavaScript 1.2 and ECMAScript v3, however,

7.1.1 Nested Functions

ECMAScript v1 and implementations prior to JavaScript

allow function definitions to be nested within other functions. For example:

function hypotenuse(a, b) {
 function square(x) { return x*x; }
 return Math.sqrt(square(a) + square(b));
}

Note that ECMAScript v3 does not allow function definitions to appear anywhere; they
are still restricted to top-level global code and top-level function code. This means that
function definitions may not appear within loops or conditionals, for example.[1] These
restrictions on function definitions apply only to function declarations with the functio
statement. As we'll discuss later in this chapter, function literals (another feature
introduced in JavaScript 1.2 and standardized by ECMAScript v3) may appear within an
JavaScript expression, which means

n

y
that they can appear within if and other statements.

e more relaxed about function definitions than the standard requires. For example, Netscape's
onal function definitions" that appear within if statements.

[1] Different implementations of JavaScript may b
implementation of JavaScript 1.5 allows "conditi

7.1.2 The Function() Constructor

The function statement is not the only way to define a new function. ECMAScript v1
and JavaScript 1.1 allow you to define a function dynamically with the Function()
constructor and the new operator. (We saw the new operator in Chapter 5, and we'll lear
more about const hapter 8

n
ructors in C .) Here is an example of creating a function in this

way:

This line of code creates a new function that is more or less equivalent to a function

urn x*y; }

ion() constructor expects any number of string arguments. The last
rgument is the body of the function -- it can contain arbitrary JavaScript statements,

var f = new Function("x", "y", "return x*y;");

defined with the familiar syntax:

function f(x, y) { ret

The Funct
a

separated from each other by semicolons. All other arguments to the constructor are
strings that specify the names of the parameters to the function being defined. If you are
defining a function that takes no arguments, you simply pass a single string -- the
function body -- to the constructor.

Notice that the Function() constructor is not passed any argument that specifies a
name for the function it creates. The unnamed functions created with the Function(
constructor are sometimes called anonymous functions.

You might well wonder what the point of the

)

 define all functions with the function statement? One reason is that Function(
) allows us to dynamically build and compile functions; it does not restrict us to the

efit is

op or

) constructor is that it is sometimes convenient,
and even elegant, to be able to define a function as part of a JavaScript expression, rather

d

Function() constructor is. Why not
simply

precompiled function bodies of the function statement. The flip side of this ben
that the Function() constructor has to compile a function each time it is called.
Therefore, you probably do not want to call this constructor within the body of a lo
within a frequently used function.

Another reason to use the Function(

than as a statement. We'll see examples of this usage later in this chapter. In JavaScript
1.2, when you want to define a function in an expression rather than a statement, a
function literal is an even more elegant choice than the Function() constructor. We'll
onsider function literals next. c

7.1.3 Function Literals

ECMAScript v3 defines and JavaScript 1.2 implements function literals, which are a thir
way to create functions. As discussed in Chapter 3, a function literal is an expression th
defines an unnamed function. The syntax for a function literal is much like that of th

at
e

nd
ss

ion() constructor, and a
function literal:

 // function statement
var f = new Function("x", "return x*x;"); // Function() constructor

e
all

function statement, except that it is used as an expression rather than as a statement a
no function name is required. The following three lines of code define three more or le
identical functions using the function statement, the Funct

function f(x) { return x*x; }

var f = function(x) { return x*x; }; // function literal

Although function literals create unnamed functions, the syntax allows a function nam
to be optionally specified, which is useful when writing recursive functions that c
themselves. For example:

var f = function fact(x) { if (x <= 1) return 1; else return x*fact(x-
1); };

This line of code defines an unnamed function and stores a reference to it in the va
f. It does not actually create a func

riable
tion named fact(), but it does allow the body of the

function to refer to itself using that name. Note, however, that this type of named function
aScript 1.5.

Keep in mind that the statement is available in all versions of JavaScript, the

ll consider in Section

literal is not properly implemented before Jav

function
Function() constructor is available only in JavaScript 1.1 and later, and function
literals are available only in JavaScript 1.2 and later. Recall that we said the three
functions defined earlier are "more or less" equivalent -- there are some differences
between these three techniques for function definition, which we'
11.5.

Function literals are useful in much the same way as functions created with the
unction() constructor. Because they are created by JavaScript expressions rather than

statements, they can be used in more flexible ways and are particularly suited for

pression can be stored into a variable, passed to another
function, or even invoked directly:

 it
s it to

ar tensquared = (function(x) {return x*x;})(10); // Define and invoke

Like the Function() constructor, function literals create unnamed functions and do not
ctions into properties. Function literals have an important

on created
xpress long,
ver, uses

Also, a function literal is parsed and compiled only once,

s
pt, however,

functions are not only syntax but also data, which means that they can be assigned to
 the elements of arrays, passed as

F

functions that are used only once and need not be named. For example, the function
specified by a function literal ex

a[0] = function(x) { return x*x; }; // Define a function and store
a.sort(function(a,b){return a-b;}); // Define a function; pas
another
v

automatically store those fun
advantage over the Function() constructor, however. The body of a functi
by Function() must be specified in a string, and it can be awkward to e
omplex function bodies in this way. The body of a function literal, howec

standard JavaScript syntax.
while the JavaScript code passed as a string to the Function() constructor must be
parsed and compiled each time the constructor is invoked.

7.2 Functions as Data
The most important features of functions are that they can be defined and invoked, as
shown in the previous section. Function definition and invocation are syntactic feature
of JavaScript and of most other programming languages. In JavaScri

variables, stored in the properties of objects or
arguments to functions, and so on.[2]

[2] This may not seem like a particularly interesting point to you unless you are fam
a program but cannot be manipulated by the program.

iliar with languages like Java, in which functions are part of

To understand how functions can be JavaScript data as well as JavaScript syntax,

s the

s the number 16
nction that square

 we

Note Function()

 array elements:

tion literal

[2] = a[0](a[1]); // a[2] contains 400

se

consider this function definition:

function square(x) { return x*x; }

This definition creates a new function object and assigns it to the variable square. The
ame of a function is really immaterial -- it is simply the name of a variable that holdn

function. The function can be assigned to another variable and still work the same way:

var a = square(4); // a contain
var b = square; // Now b refers to the same fu
does
var c = b(5); // c contains the number 25

Functions can also be assigned to object properties rather than global variables. When
do this, we call them methods:

var o = new Object;
o.square = new Function("x", "return x*x"); //
constructor

 256 y = o.square(16); // y equals

Functions don't even require names at all, as when we assign them to

var a = new Array(3);
a[0] = function(x) { return x*x; } // Note func
a[1] = 20;
a

The function invocation syntax in this last example looks strange, but it is still a legal u
of the JavaScript () operator!

Example 7-2 is a detailed example of the things that can be done when functions are u
as data. It demonstrates how functions can be passed as arguments to other functions a
also how they can be stored in associative arrays (which were introduced in

sed
nd

Chapter 3
and are explained in detail in Chapter 8.) This example may be a little tricky, but the
comments explain what is going on; it is worth studying carefully.

Example 7-2. Using functions as data

function subtract(x,y) { return x - y; }

// We define some simple functions here
function add(x,y) { return x + y; }

function multiply(x,y) { return x * y; }
function divide(x,y) { return x / y; }

// Here's a function that takes one of the above functions

// as an argument and invokes it on two operands
function operate(operator, operand1, operand2)
{
 return operator(operand1, operand2);
}

// We could invoke this function like this to compute the value
(4*5):
var i = operate(add, operate(add, 2, 3), operate(multiply, 4, 5));

// For the sake of example, we implement the functions again, this time
// using function literals. We store the functions in an as
array.

(2+3) +

sociative

va
op
op

function operate2(op_name, operand1, operand2)

es,
sorts the elements of an array.

Because there are many possible orders to sort by (numerical order, alphabetical order,
cending, and so on), the sort() function optionally takes

alue

3 Function Scope: The Call Object

r operators = new Object();
erators["add"] = function(x,y) { return x+y; };
erators["subtract"] = function(x,y) { return x-y; };

operators["multiply"] = function(x,y) { return x*y; };
operators["divide"] = function(x,y) { return x/y; };
operators["pow"] = Math.pow; // Works for predefined functions too

// This function takes the name of an operator, looks up that operator
// in the array, and then invokes it on the supplied operands. Note
// the syntax used to invoke the operator function.

{
 if (operators[op_name] == null) return "unknown operator";
 else return operators[op_name](operand1, operand2);
}

// We could invoke this function as follows to compute
// the value ("hello" + " " + "world"):
var j = operate2("add", "hello", operate2("add", " ", "world"))
// Using the predefined Math.pow() function:
var k = operate2("pow", 10, 2)

If the preceding example does not convince you of the utility of being able to pass
functions as arguments to other functions and otherwise treat functions as data valu
consider the Array.sort() function. This function

date order, ascending, des
another function as an argument to tell it how to perform the sort. This function has a

array, compares them, and then returns a vsimple job -- it takes two elements of the
that specifies which element comes first. This function argument makes the Array.sort(

ny) method perfectly general and infinitely flexible -- it can sort any type of data into a
conceivable order!

7.
As described in Chapter 4, the body of a JavaScript function executes in a local scope
that differs from the global scope. This new scope is created by adding the call object to
the front of the scope chain. Since the call object is part of the scope chain, any properties

of this object are accessible as variables within the body of the function. Local variables
declared with the var statement are created as properties of this object; the parameters of
the function are also made available as properties of the object.

 call object defines one special property

arguments
cal variables

ents should be considered a
eter name.

4 Function Arguments: The Arguments Object
arguments eaning.

arguments is a special property of the call object that refers to an object known as the

ay object.
The Arguments object also defines an additional callee property, described later.

nts, it

u
on

.
er

, arguments.length has the value 2.

ows

The arguments[] array also opens up an important possibility for JavaScript functions:
they can be written so that they work with any number of arguments. Here's an example
that shows how you can write a simple max() function that accepts any number of

In addition to local variables and parameters, the
amed arguments. This property refers to another special object known as the n

Arguments object, which is discussed in the next section. Because the
t has exactly the same status as loproperty is a property of the call object, i

and function parameters. For this reason, the identifier argum
 used as a variable or paramreserved word and should not be

7.
Within the body of a function, the identifier always has special m

Arguments object. The Arguments object is like an array that allows the argument values
passed to the function to be retrieved by number, but it is not actually an Arr

Although a JavaScript function is defined with a fixed number of named argume
can be passed any number of arguments when it is invoked. The arguments[] array
allows full access to these argument values, even when some are unnamed. Suppose yo
define a function f that expects to be passed one argument, x. If you invoke this functi
with two arguments, the first argument is accessible within the function by the parameter
name x or as arguments[0]. The second argument is accessible only as arguments[1]
Furthermore, like all arrays, arguments has a length property that specifies the numb
of elements it contains. Thus, within the body of our function f, invoked with two
arguments

The arguments[] array is useful in a number of ways. The following example sh
how you can use it to check that a function is invoked with the correct number of
arguments, since JavaScript doesn't do this for you:

function f(x, y, z)
{
 // First, check that the right number of arguments were passed
 if (arguments.length != 3) {
 throw new Error("function f called with " + arguments.length +
 "arguments, but it expects 3 arguments.");
 }
 // Now do the actual function...
}

arguments and returns the value of the largest argument it is passed (see also the built-in
function Math.max(), which in ECMAScript v3 also accepts any number of arguments):

 // Loop through all the arguments, looking for, and
ing, the biggest

ments.length; i++)
ents[i];

 return m;
}

ect a fixed number of

 to have some
numbered properties. The ECMAScript specification does not require the Arguments

ial behavior that arrays do. Although you can assign a
operty, for example, ECMAScript does not require

function max()
{
 var m = Number.NEGATIVE_INFINITY;

 // remember
 for(var i = 0; i < argu
 if (arguments[i] > m) m = argum

// Return the biggest

var largest = max(1, 10, 100, 2, 3, 1000, 4, 5, 10000, 6);

You can also use the arguments[] array to write functions that exp
named arguments followed by an arbitrary number of unnamed arguments.

Throughout this section we've been referring to the "arguments array." Keep in mind,
however, that arguments is not really an array; it is an Arguments object. Each
Arguments object defines numbered array elements and a length property, but it is not
technically an array -- it is better to think of it as an object that happens

object to implement any of the spec
value to the arguments.length pr
you to do so to actually alter the number of array elements defined in the object. (See
Chapter 9 for an explanation of the special behavior of the length property of true Arr
objects.)

The Arguments object has one

ay

arguments[]
lue that is retrieved by the argument name. For example:

very unusual feature. When a function has named
arguments, the array elements of the Arguments object are synonyms for the local
variables that hold the function arguments. The arguments[] array and the argument
named arguments are two different ways of referring to the same variable. Changing the
value of an argument with an argument name changes the value that is retrieved through
the arguments[] array. Changing the value of an argument through the
array changes the va

function f(x) {
 alert(x); // Displays the initial value of the argument
 arguments[0] = null; // Changing the array element also changes x
 alert(x); // Now displays "null"
}

7.4.1 The callee Property

In addition to its array elements, the Arguments object defines a callee property that

n(x) {
 if (x <= 1) return 1;

s.callee(x-1);

lemented in JavaScript 1.2.

.5 Function Properties and Methods
 they

ructor. These are sure signs that functions are
actually represented by a type of JavaScript object, the Function object. Since functions

example. Now that we've discussed the call and Arguments objects that are used in the

 to the Function object itself.

were passed to the function. The length
property of a function itself, however, has a different meaning. This read-only property

e passed -- that is, the
that a function can be

 that

mber of arguments it expected. If not, it throws an
exception. The check() function is followed by a test function f() that demonstrates

refers to the function that is currently being executed. This is useful, for example, to
allow unnamed functions to invoke themselves recursively. For instance, here is an
unnamed function literal that computes factorials:

fu

nctio

 return x * argument
}

The callee property is defined by ECMAScript v1 and imp

7
We've seen that functions can be used as data values in JavaScript programs and that
can be created with the Function() const

are objects, they have properties and methods, just like the String and Date objects, for

context of function invocation, let's turn

7.5.1 The length Property

As we've seen, within the body of a function, the length property of the arguments
array specifies the number of arguments that

returns the number of arguments that the function expects to b
number of parameters it declares in its parameter list. Recall
invoked with any number of arguments, which it can retrieve through the arguments
array, regardless of the number of parameters it declares. The length property of the
Function object specifies exactly how many declared parameters a function has. Note
unlike arguments.length, this length property is available both inside and outside of
the function body.

The following code defines a function named check() that is passed the arguments
array from another function. It compares the arguments.length property to the
Function.length property (which it accesses as arguments.callee.length) to see if
the function was passed the nu

how check() can be used:

function check(args) {

 var actual = args.length; // The actual number of
arguments
 var expected = args.callee.length; // The expected number of

n if they don't

 throw new Error("Wrong number of arguments: expected: " +
 expected + "; actually passed " + actual);
 }
}

 // Check that the actual # of args matches the expected # of args

arguments
 if (actual != expected) { // Throw an exceptio
match

function f(x, y, z) {

 // Throw an exception if they don't match
 check(arguments);
 // Now do the rest of the function normally
 return x + y + z;
}

The length property of the Function object is standardized by ECMAScript v1 and
implemented in JavaScript 1.1 and later.[3]

0,[3] In Netscape 4. a bug prevents this property from working correctly unless the language attribute of the <script> tag is

7.5.2 The prototype Property

Every function has a prototype property that refers to a predefined prototype object.
pe object comes into play when the function is used as a constructor with the
 it plays an important role in the process of defining new object types. We'll

erty in detail in Chapter 8

explicitly set to "JavaScript1.2".

This prototy
new operator;
explore this prop .

lue persists across invocations, it is
property of the Function object, instead of cluttering up the
global variable. For example, suppose we want to write a

nction that returns a unique identifier whenever it is invoked. The function must never

 unnecessary

re is an example that returns a unique
integer whenever it is called:

/ Create and initialize the "static" variable.
// Function declarations are processed before code is executed, so

7.5.3 Defining Your Own Function Properties

When a function needs to use a variable whose va
often convenient to use a

amespace by defining a n
fu
return the same value twice. In order to manage this, the function needs to keep track of
the values it has already returned, and this information must persist across function
invocations. We could store this information in a global variable, but that is
because the information is used only by the function itself. It is better to store the
information in a property of the Function object. He

/

// we really can do this assignment before the function declaration.
uniqueInteger.counter = 0;

// Here's the function. It returns a
// it is called and uses a "static" p
// of the last value it returned.

different value each time
roperty of itself to keep track

function uniqueInteger() {
 // Increment and return our "static" variable
 return uniqueInteger.counter++;
}

7.5.4 The apply() and call() Methods

ECMAScript v3 defines two methods that are defined for all functions, call() and
apply(). These methods allow you to invoke a function as if it were a method of some
other object. (Note that we have not discussed methods yet; you may find this section
more understandable once you have read Chapter 8.) The first argument to both call(
and

)
ction is to be invoked; this argument

becomes the value of the keyword within the body of the function. Any remaining
alues that are passed to the function that is invoked. For

example, to pass two numbers to the function f() and invoke it as if it were a method of

his is similar to the following lines of code:

.apply(o, [1,2]);

mbers, you could use the apply(
 method to pass the elements of the array to the function:[4]

apply() is the object on which the fun
this

arguments to call() are the v

the object o, you could use code like this:

f.call(o, 1, 2);

T

o.m = f;
o.m(1,2);
delete o.m;

The apply() method is like the call() method, except that the arguments to be
passed to the function are specified as an array:

f

For example, to find the largest number in an array of nu
) Math.max()

Script 1.2, but the call() method is not

[4] This example assumes we are using the ECMAScript v3 Math.max() function, which accepts an arbitrary number of arguments;
the ECMAScript v1 version of the function accepts only two arguments.

var biggest = Math.max.apply(null, array_of_numbers);

The apply() method is implemented in Java
l JavaScript 1.5 implemented unti

Chapter 8. Objects
Chapter 3 explained that objects are one of the funda

are also one of the most important. This chapter describes JavaScript objects in
mental data types in JavaScript.

etail. Basic usage of objects, described in the next section, is straightforward, but as
we'll see in later sections, objects have more complex uses and behaviors.

Properties
ultiple values into a single unit and

 followed by the name of
an create an

 newly created
tructor initializes an

// The current date and

sents December 31,

They
d

8.1 Objects and
Objects are composite data types: they aggregate m
allow us to store and retrieve those values by name. Another way to explain this is to say
that an object is an unordered collection of properties, each of which has a name and a
value. The named values held by an object may be primitive values like numbers and
strings, or they may themselves be objects.

8.1.1 Creating Objects

Objects are created with the new operator. This operator must be
a constructor function that serves to initialize the object. For example, we c

roperties) like this: empty object (an object with no p

var o = new Object();

JavaScript supports other built-in constructor functions that initialize
objects in other, less trivial, ways. For example, the Date() cons

ime: object that represents a date and t

var now = new Date();
time
var new_years_eve = new Date(2000, 11, 31); // Repre
2000

Later in this chapter, we'll see that it is possible to define custom constructor methods to
initialize newly created objects in any way you desire.

Object literals provide another way to create and initialize new objects. As we saw in
Chapter 3, an object literal allows us to embed an object description literally in JavaScrip
code in much the same way that we embed textual data into JavaScri

t
pt code as quoted

d list of property specifications
ion in an object literal consists of

e followed by a colon and the property value. For example:

var circle = { x:0, y:0, radius:2 }
var homer = {

strings. An object literal consists of a comma-separate
nclosed within curly braces. Each property specificate

the property nam

 name: "Homer Simpso
 age: 34,

n",

The object literal syntax is defined by the ECMAScript v3 specification and implemented

 normally use the . operator to access the value of an object's properties. The value
on the left of the . should be a reference to an object (usually just the name of the

 the
r

perty p in object o with o.p or to the property radius
in the object circle with circle.radius. Object properties work like variables: you can

from them. For example:

ject.
book.title = "JavaScript: The Definitive Guide"

ct();
ntroduction to JavaScript";

ook.chapter1.pages = 19;
book.chapter2 = { title: "Lexical Structure", pages: 6 };

.chapter2.title);

out this example is that you can create a new property of

 married: true,
 occupation: "plant operator",
 email: "homer@simpsons.com"
};

in JavaScript 1.2 and later.

8.1.2 Setting and Querying Properties

You

variable that contains the object reference). The value on the right of the . should be
name of the property. This must be an identifier, not a string or an expression. Fo
example, you would refer to the pro

store values in them and read values

// Create an object. Store a reference to it in a variable.
var book = new Object();

// Set a property in the ob

// Set some more properties. Note the nested objects.
book.chapter1 = new Obje
ook.chapter1.title = "Ib
b

// Read some property values from the object.
alert("Outline: " + book.title + "\n\t" +
 "Chapter 1 " + book.chapter1.title + "\n\t" +
 "Chapter 2 " + book

An important point to notice ab
an object simply by assigning a value to it. Although we declare variables with the var
keyword, there is no need (and no way) to do so with object properties. Furthermore,
once you have created an object property by assigning a value to it, you can change the
value of the property at any time simply by assigning a new value:

book.title = "JavaScript: The Rhino Book"

8.1.3 Enumerating Properties

The for/in loop discussed in Chapter 6 provides a way to loop through, or enumerate,
the properties of an object. This can be useful when debugging scripts or when working
wit b hose names you do not know in
adv c
an obje

function DisplayPropertyNames(obj) {

mes);

r, and
defined properties, it does not enumerate certain

ethods.

.4 Undefined Properties

ords, a
ing the undefined

h o jects that may have arbitrary properties w
an e. The following code shows a function you can use to list the property names of

ct:

 var names = "";
 for(var name in obj) names += name + "\n";
 alert(na
}

Note that the loop does not enumerate properties in any specific ordefor/in
hough it enumerates all user-alt

predefined properties or m

8.1

If you attempt to read the value of a property that does not exist (in other w
property that has never had a value assigned to it), you end up retriev
value (introduced in Chapter 3).

You can use the delete operator to delete a property of an object:

We saw previously that you c a new object in JavaScript by using
t(
pes

pl
you are writing a program that manipulates rectangles, y ight want to represent

l type, or class, of object. Each object of this Rectangle class
operty and a height property, since those are the essential

defining characteristics of rectangles.

delete book.chapter2;

Note that deleting a property does not merely set the property to undefined; it actually
removes the property from the object. The for/in loop demonstrates this difference: it
enumerates properties that have been set to the undefined value, but it does not
enumerate deleted properties.

8.2 Constructors
an create and initialize

the new operator in conjunction with a predefined constructor function such as Objec
), Date(), or Function(). These predefined constructors and the built-in object ty
they create are useful in many instances. However, in object-oriented programming, it is
also common to work with custom object types defined by your program. For exam e, if

ou m
rectangles with a specia
would have a width pr

To create objects with properties such as width and height already defined, we need to
write a constructor to create and initialize these properties in a new object. A construct
is a JavaScript function with two special features:

• It is invoked through the

or

w operator.
• It is passed a reference to a newly created, empty object as the value of the this

ord, and it is responsible for performing appropriate initialization for that
new object.

ne

keyw

Example 8-1 shows how the constructor function for a Rectangle object might be defined
and invoked.

xample 8-1. A Rectangle object constructor function

"this".
function Rectangle(w, h)

 this.width = w;
 this.height = h;

can i ize each new object appropriately.

 defining an appropriate constructor function
 constructor are now guaranteed to have

width and height properties. This means that we can write programs that rely
es a

lize the object

w

E
// Define the constructor.
// Note how it initializes the object referred to by

{

}

// Invoke the constructor to create two Rectangle objects.
// We pass the width and height to the constructor,
// so it nitial
var rect1 = new Rectangle(2, 4);
var rect2 = new Rectangle(8.5, 11);

Notice how the constructor uses its arguments to initialize properties of the object
referred to by the this keyword. Keep in mind that a constructor function simply
initializes the specified object; it does not have to return that object.

We have defined a class of objects simply by
- all objects created with the Rectangle()-

initialized
on this fact and treat all Rectangle objects uniformly. Because every constructor defin
class of objects, it is stylistically important to give a constructor function a name that
indicates the class of objects it creates. Creating a rectangle with new Rectangle(1,2) is
a lot more intuitive than with new init_rect(1,2), for example.

Constructor functions typically do not have return values. They initia
passed as the value of this and return nothing. However, a constructor is allowed to
return an object value, and, if it does so, that returned object becomes the value of the ne
expression. In this case, the object that was the value of this is simply discarded.

8.3 Methods

A method is nothing more than a JavaScript function that is invoked through an object
Recall that functions are data values and that there is nothing s al ab

.
peci out the names

with which they are defined -- a function can be assigned to any variable, or even to any

o.m = f;

 if m() expects two arguments, we might invoke it like this:

voked
yword within the body of the method. For example,

o with the this

this keyword should begin to clarify why we use methods at all.

n the object , but the
the

ions are
al

 keyword refers to the global object. Thus,
ns and methods. The real difference lies in

property of an object. If we have a function f and an object o, we can define a method
named m with the following line:

Having defined the method m() of the object o, we invoke it like this:

o.m();

Or,

o.m(x, x+2);

Methods have one very important property: the object through which a method is in
becomes the value of the this ke
when we invoke o.m(), the body of the method can refer to the object
keyword.

The discussion of the
Any function that is used as a method is effectively passed an extra argument -- the object
through which it is invoked. Typically, a method performs some sort of operation on that
object, so the method invocation syntax is a particularly elegant way to express the fact
that a function is operating on an object. Compare the following two lines of code:

rect.setSize(width, height);
setRectSize(rect, width, height);

These two lines may perform exactly the same operation o rect
method invocation syntax in the first line more clearly indicates the idea that it is
object rect that is the primary focus, or target, of the operation. (If the first line does not
seem a more natural syntax to you, you are probably new to object-oriented
programming. With a little experience, you will learn to love it!)

While it is useful to think of functions and methods differently, there is not actually as
much difference between them as there initially appears to be. Recall that funct
values stored in variables and that variables are nothing more than properties of a glob

a function, you are actually invoking a method of the object. Thus, when you invoke
global object. Within such a function, the this

rence between functiothere is no technical diffe

design and intent: methods are written to operate som
 use the

ehow on the this object, while
 this object.

ed through an example. Example 8-

functions usually stand alone and do not

The typical usage of methods is more clearly illustrat
2 returns to the Rectangle objects of Example 8-1 and shows how a method that operates

ked.

s keyword, so it doesn't make sense to
f; it needs instead to be made a method of some

" and "height" properties defined.

 return this.width * this.height;

5

on Rectangle objects can be defined and invo

Example 8-2. Defining and invoking a method
// This function uses the thi
// invoke it by itsel
// object that has "width
function compute_area()
{

}

// Create a new Rectangle object, using the constructor defined
earlier.
var page = new Rectangle(8.5, 11);

// Define a method by assigning the function to a property of the
object.
page.area = compute_area;

// Invoke the new method like this:
var a = page.area(); // a = 8.5*11 = 93.

One shortcoming is evident in Example 8-2: before you can invoke the area() method
for the rect object, you must assign that method to a property of the object. While we
can invoke the area() method on the particular object named page, we can't invoke it
on any other Rectangle objects without first assigning the method to them. This quickly
becomes tedious. Example 8-3 defines some additional Rectangle methods and show
how they can automatically be assigned to all Rectangle objects with a constructor
function.

s

Example 8-3. Defining methods in a constructor
// First, define some functions that will be used as methods.

his.height *= 2; }
is.height /= 2; }

 this.height = h;

function Rectangle_area() { return this.width * this.height; }
function Rectangle_perimeter() { return 2*this.width + 2*this.height;
}
function Rectangle_set_size(w,h) { this.width = w; this.height = h; }
function Rectangle_enlarge() { this.width *= 2; t
function Rectangle_shrink() { this.width /= 2; th

// Then define a constructor method for our Rectangle objects.
// The constructor initializes properties and also assigns methods.
function Rectangle(w, h)
{
 // Initialize object properties.
 this.width = w;

 // Define methods for the object.
 this.area = Rectangle_area;
 this.perimeter = Rectangle_perimeter;
 this.set_size = Rectangle_set_size;
 this.enlarge = Rectangle_enlarge;
 this.shrink = Rectangle_shrink;
}
// Now, when we create a rectangle, we can immediately invoke methods
on it:
var r = new Rectangle(2,2);
var a = r.area();
r.enlarge();
var p = r.perimeter();

The technique shown in Example 8-3 also has a shortcoming. In this example, the
Rectangle() constructor sets seven properties of each and every Rectangle object it

r

cts

ass.

initializes, even though five of those properties have constant values that are the same fo
every rectangle. Each property takes up memory space; by adding methods to our
Rectangle class, we've more than tripled the memory requirements of each Rectangle
object. Fortunately, JavaScript has a solution to this problem: it allows an object to inherit
properties from a prototype object. The next section describes this technique in detail.

8.4 Prototypes and Inheritance
We've seen how inefficient it can be to use a constructor to assign methods to the obje
it initializes. When we do this, each and every object created by the constructor has
identical copies of the same method properties. There is a much more efficient way to
specify methods, constants, and other properties that are shared by all objects in a cl

JavaScript objects "inherit" properties from a prototype object.[1] Every object has a
prototype; all of the properties of the prototype object appear to be properties of any
objects for which it is a prototype. That is, each object inherits properties from its
prototype.

[1] Prototypes were introduced in Java

he prototype of an object is defined by the constructor function that was used to create
and initialize the object. All functions in JavaScript have a property that

es

Script 1.1; they are not supported in the now obsolete JavaScript 1.0.

T
prototype

refers to an object. This prototype object is initially empty, but any properties you define
in it will be inherited by all objects created by the constructor.

A constructor defines a class of objects and initializes properties, such as width and
height, that are the state variables for the class. The prototype object is associated with
the constructor, so each member of the class inherits exactly the same set of properti
from the prototype. This means that the prototype object is an ideal place for methods and
other constant properties.

Note that inheritance occurs automatically, as part of the process of looking up a proper
value. Properties are

ty
ly

ount of memory
required by each object, since the object can inherit many of its properties. The second

tially
 one

property p of an object o, JavaScript first checks to see if o has a property named p. If it
otype object of o has a property named p. This is
 work.

 to set the property of the prototype. Now you have changed

t when you
om its

a new property p directly in o. Now that o has
hen

p
e of p

p o "shadows" or "hides" the
Figure

not copied from the prototype object into new objects; they mere
appear as if they were properties of those objects. This has two important implications.
First, the use of prototype objects can dramatically decrease the am

implication is that an object inherits properties even if they are added to its prototype
after the object is created.

Each class has one prototype object, with one set of properties. But there are poten
many instances of a class, each of which inherits those prototype properties. Because
prototype property can be inherited by many objects, JavaScript must enforce a
fundamental asymmetry between reading and writing property values. When you read

does not, it next checks to see if the prot
hat makes prototype-based inheritancew

When you write the value of a property, on the other hand, JavaScript does not use the
prototype object. To see why, consider what would happen if it did: suppose you try to
set the value of the property o.p when the object o does not have a property named p.
Further suppose that JavaScript goes ahead and looks up the property p in the prototype
object of o and allows you
the value of p for a whole class of objects -- not at all what you intended.

Therefore, property inheritance occurs only when you read property values, no
bject o that inherits that property frwrite them. If you set the property p in an o

you create prototype, what happens is that
its own property named p, it no longer inherits the value of p from its prototype. W
you read the value of p, JavaScript first looks at the properties of o. Since it finds

t and never finds the valudefined in o, it doesn't need to search the prototype objec
ined there. We sometimes say that the property in def

property p in the prototype object. Prototype inheritance can be a confusing topic.
8-1 illustrates the concepts we've discussed here.

Figure 8-1. Objects and prototypes

Because prototype properties are shared by all objects of a class, it generally makes sense
to use them only to define properties that are the same for all objects within the class.

es

you

at represent
circles. The prototype object for this class is Circle.prototype,[2]

This makes prototypes ideal for defining methods. Other properties with constant valu
(such as mathematical constants) are also suitable for definition with prototype
properties. If your class defines a property with a very commonly used default value,
might define this property and its default value in a prototype object. Then, the few
objects that want to deviate from the default value can create their own private, unshared
copies of the property and define their own nondefault values.

Let's move from an abstract discussion of prototype inheritance to a concrete example.
Suppose we define a Circle() constructor function to create objects th

 so we can define a

) constructor but have not yet used it to create any Circle objects, we'd define the constant property pi like this:

constant available to all Circle objects like this:

[2] The prototype object of a constructor is created automatically by JavaScript. In most versions of JavaScript, every function is automatically
given an empty prototype object, just in case it is used as a constructor. In JavaScript 1.1, however, the prototype object is not created until the
function is used as a constructor for the first time. This means that if you require compatibility with JavaScript 1.1, you should create at least
one object of a class before you use the prototype object to assign methods and constants to objects of that class. So, if we have defined a
Circle(

//First create and discard a dummy object; forces prototype object
creation. new Circle (); //Now we can set properties in the protot
Circle.prototype.pi = 3.14159'

ype.

Circle.prototype.pi = 3.14159;

Example 8-4 shows our Circle example fully fleshed out. The code defines a Circle
class by first defining a Circle() constructor to initialize each individual object and
then setting properties of

ss.

Example 8-4. Defining a Circle

.x = x; // The X-coordinate of the center of the circle

Script 1.1.

// First declare a function, then assign it to a prototype property.

// Define another method. This time we use a function literal to define
t to a prototype property all in one step.

Circle.prototype to define methods and constants shared by
all instances of the cla

 class with a prototype object
// Define a constructor method for our class.
// Use it to initialize properties that will be different for
// each individual Circle object.
function Circle(x, y, r)
{
 this
 this.y = y; // The Y-coordinate of the center of the circle
 this.r = r; // The radius of the circle
}

// Create and discard an initial Circle object.
// This forces the prototype object to be created in Java
new Circle(0,0,0);

// Define a constant: a property that will be shared by
// all circle objects. Actually, we could just use Math.PI,
// but we do it this way for the sake of instruction.
Circle.prototype.pi = 3.14159;

// Define a method to compute the circumference of the circle.

// Note the use of the constant defined above.
function Circle_circumference() { return 2 * this.pi * this.r; }
Circle.prototype.circumference = Circle_circumference;

// the function and assign i
Circle.prototype.area = function() { return this.pi * this.r *
this.r; }

// The Circle class is defined.
// Now we can create an instance and invoke its methods.
var c = new Circle(0.0, 0.0, 1.0);
var a = c.area();
var p = c.circumference();

8.4.1 Prototypes and Built-in Classes

It is not only user-defined classes that have prototype objects. Built-in classes, such a
String and

s
Date, have prototype objects too, and you can assign values to them.[3] For

example, the following code defines a new method that is available for all String objects:

 In JavaScript 1.1 and later.

w endsWith() method in the String prototype object, we can use
 like this:

such as C++ and Java. The common conception about object-oriented programming
gly typed and support class-based inheritance. By these

criteria, it is easy to dismiss JavaScript as not being a true object-oriented language. On

 the
nd

[3]

// Returns true if the last character is c
String.prototype.endsWith = function(c) {
 return (c == this.charAt(this.length-1))
}

Having defined the ne
it

var message = "hello world";
message.endsWith('h') // Returns false
message.endsWith('d') // Returns true

8.5 Object-Oriented JavaScript
Although JavaScript supports a data type we call an object, it does not have a formal
notion of a class. This makes it quite different from classic object-oriented languages

languages is that they are stron

the other hand, we've seen that JavaScript makes heavy use of objects and that it has its
own type of prototype-based inheritance. JavaScript is a true object-oriented language. It
draws inspiration from a number of other (relatively obscure) object-oriented languages
that use prototype-based inheritance instead of class-based inheritance.

Although JavaScript is not a class-based object-oriented language, it does a good job of
simulating the features of class-based languages such as Java and C++. I've been using
the term class informally throughout this chapter. This section more formally explores
parallels between JavaScript and true class-based inheritance languages such as Java a
C++.[4]

[4] You should read this section even if you are not familiar with those languages and that style of object-oriented programming.

Let's start by defining so
tructure that contains v

me basic terminology. An object, as we've already seen, is a data
arious pieces of named data and may also contain various

ethods to operate on those pieces of data. An object groups related values and methods

 not
the case in strictly typed languages such as Java and C++. In those languages, each object

s
m
into a single convenient package, which generally makes programming easier by
increasing the modularity and reusability of code. Objects in JavaScript may have any
number of properties, and properties may be dynamically added to an object. This is

has a predefined set of properties,[5] where each property is of a predefined type. When we
are using JavaScript objects to simulate object-oriented programming techniques, we

lds an object contains and what types of data each holds. It also defines the
 class,

ntion to name classes with an initial capital
tters. This convention helps keep classes and

nstances of those classes named c and rect.

tance
ore the

rties

r
very Circle object has a property r that specifies the radius of

as its own copy of the
s an

 an instance property. To truly simulate
ipt

generally define in advance the set of properties for each object and the type of data that
each property holds.

[5] They are usually called "fields" in Java and C++, but we'll refer to them as properties here, since that is the JavaScript terminology.

In Java and C++, a class defines the structure of an object. The class specifies exactly
what fie
methods that operate on an object. JavaScript does not have a formal notion of a
but, as we've seen, it approximates classes with its constructors and their prototype
objects.

In both JavaScript and class-based object-oriented languages, there may be multiple
objects of the same class. We often say that an object is an instance of its class. Thus,
there may be many instances of any class. Sometimes we use the term instantiate to
describe the process of creating an object (i.e., an instance of a class).

In Java, it is a common programming conve
letter and to name objects with lowercase le
objects distinct from each other in code; it is a useful convention to follow in JavaScript
programming as well. In previous sections, for example, we've defined the Circle and
Rectangle classes and have created i

The members of a Java class may be of four basic types: instance properties, ins
methods, class properties, and class methods. In the following sections, we'll expl
differences between these types and show how they are simulated in JavaScript.

8.5.1 Instance Prope

Every object has its own separate copies of its instance properties. In other words, if
there are 10 objects of a given class, there are 10 copies of each instance property. In ou
Circle class, for example, e
the circle. In this case, r is an instance property. Since each object h
instance properties, these properties are accessed through individual objects. If c i

bject that is an instance of the Circle class, for example, we refer to its radius as:o

c.r

By default, any object property in JavaScript is
object-oriented programming, however, we will say that instance properties in JavaScr
are those properties that are created and/or initialized in an object by the constructor
function.

8.5.2 Instance Methods

An instance method is much like an instance property, except that it is a method rather
than a data value. (In Java, functions and methods are not data, as they are in JavaScript,
so this distinction is more clear.) Instance methods are invoked on a particular object, or

nce method. It is invoked on

 does
es of a

lass. In JavaScript, we define an instance method for a class by setting a property in the
ue. This way, all objects created by that
function and can invoke it using the

 is
stance properties are accessed through an
 through the class itself.

 is an example of a class property in JavaScript: the MAX_VALUE
ch
ver,

e
e they are not likely to be overwritten by other properties

he same name. As is probably clear, we simulate a class property in JavaScript
ly by defining a property of the constructor function itself. For example, to create a

wing:

objects, we can
ject.

4 Class Methods

ss

instance. The area() method of our Circle class is an insta
a Circle object c like this:

a = c.area();

Instance methods use the this keyword to refer to the object or instance on which they
are operating. An instance method can be invoked for any instance of a class, but this
does not mean that each object contains its own private copy of the method, as it
with instance properties. Instead, each instance method is shared by all instanc
c
constructor's prototype object to a function val
constructor share an inherited reference to the
method invocation syntax shown earlier.

8.5.3 Class Properties

A class property in Java is a property that is associated with a class itself, rather than with
each instance of a class. No matter how many instances of the class are created, there
only one copy of each class property. Just as in
instance of a class, class properties are accessed
Number.MAX_VALUE
property is accessed through the Number class. Because there is only one copy of ea
class property, class properties are essentially global. What is nice about them, howe

ition in this that they are associated with a class and they have a logical niche, a pos
JavaScript namespace, wher
with t
simp
class property Circle.PI to store the mathematical constant pi, we can do the follo

Circle.PI = 3.14;

Circle is a constructor function, but because JavaScript functions are
create properties of a function just as we can create properties of any other ob

8.5.

Finally, we come to class methods. A class method is a method associated with a cla
rather than with an instance of a class; they are invoked through the class itself, not
through a particular instance of the class. The Date.parse() method (which you can

look up in the core reference section of this book) is a class method. You always invoke it
gh the Date constructor object, rather than through a particular instance of the Date

od is invoked. Like class properties, class methods are global. Because they do not
ht of as
 functions

aScript namespace and prevents
espace collisions. To define a class method in JavaScript, we simply make the

ple 8-5

throu
class.

Because class methods are not invoked through a particular object, they cannot
meaningfully use the this keyword -- this refers to the object for which an instance
meth
operate on a particular object, class methods are generally more easily thoug

ain, associating thesefunctions that happen to be invoked through a class. Ag
with a class gives them a convenient niche in the Jav
nam
appropriate function a property of the constructor.

8.5.5 Example: The Circle Class

Exam is a reimplementation of our Circle class that contains examples of each of

s
tion Circle(radius) { // The constructor defines the class

rcle.PI is a class property--it is a property of the constructor

area.
tion Circle_area() { return Circle.PI * this.r * this.r; }

method by assigning it

tion literal to
efine the function without naming it Circle_area.

 objects as arguments

 larger radius).
tion Circle_max(a,b) {

o Circle objects, it doesn't make

 on a single Circle object. But we don't
ant

these four basic types of members.

Example 8-5. Defining instance and class properties and method
func
itself.
 // r is an instance property, defined and initialized in the
constructor.
 this.r = radius;
}

 Ci//

function.
Circle.PI = 3.14159;

Here is a function that computes a circle's //
ncfu

instance // Here we make the function into an

// to the prototype object of the constructor.
Note: with JavaScript 1.2, we can use a func//
 d//

Circle.prototype.area = Circle_area;

// Here's another function. It takes two Circle
and

returns the one that is larger (i.e., has the//
ncfu

 if (a.r > b.r) return a;
 else return b;
}

tw// Since this function compares
sense as
/ an instance method operating/
w

// it to be a standalone function eithe
method

r, so we make it into a class

n

// by assigning it to the constructor function:
Circle.max = Circle_max;

// Here is some code that uses each of these fields:
var c = new Circle(1.0); // Create an instance of the Circle class
c.r = 2.2; // Set the r instance property
var a = c.area(); // Invoke the area() instance method
var x = Math.exp(Circle.PI); // Use the PI class property in our ow
computation
var d = new Circle(1.2); // Create another Circle instance
var bigger = Circle.max(c,d); // Use the max() class method

8.5.6 Example: Complex Numbers

Example 8-6 is another example, somewhat more formal than the last, of defining a class
of objects in JavaScript. The code and the comments are worth careful study. Note that
this example uses the function literal syntax of JavaScript 1.2. Because it requires this
version of the language (or later), it does not bother with the JavaScript 1.1 compatibility
technique of invoking the constructor once before assigning to its prototype object.

Example 8-6. A complex number class
/*

 * The first step in defining a class is defining the constructor

/*
ning its instance
 the prototype object

ined in this object will
stances of the class. Note that instance
citly on the this keyword. For many methods,

no other arguments are needed.

 * Complex.js:
 * This file defines a Complex class to represent complex numbers.
 * Recall that a complex number is the sum of a real number and an
 * imaginary number and that the imaginary number i is the
 * square root of -1.
 */

/*

 * function of the class. This constructor should initialize any
 * instance properties of the object. These are the essential
 * "state variables" that make each instance of the class different.
 */
function Complex(real, imaginary) {
 this.x = real; // The real part of the number
 this.y = imaginary; // The imaginary part of the number
}

 * The second step in defining a class is defi
) in * methods (and possibly other properties

or. Any properties def * of the construct
 * be inherited by all in

methods operate impli *
 *

 */

// Return the magnitude of a complex number. This is defined

om the origin (0,0) of the complex plane. // as its distance fr

Complex.prototype.magnitude = function() {

ber that is the negative of this one.
tive = function() {

lex(-this.x, -this.y);

// Convert a Complex object to a string in a useful way.

/*
class methods,
operties of the

* constructor function itself (instead of as properties of the

ex numbers and return the product.
omplex.multiply = function(a, b) {
 return new Complex(a.x * b.x - a.y * b.y,

efined complex numbers.

 an explicit concept
es

 return Math.sqrt(this.x*this.x + this.y*this.y);
};

// Return a complex num
Complex.prototype.nega
 return new Comp
};

// This is invoked when a Complex object is used as a string.
Complex.prototype.toString = function() {
 return "{" + this.x + "," + this.y + "}";
};

// Return the real portion of a complex number. This function
// is invoked when a Complex object is treated as a primitive value.
Complex.prototype.valueOf = function() { return this.x; }

 * The third step in defining a class is to define
* constants, and any needed class properties as pr

 * prototype object of the constructor). Note that class methods
 * do not use the this keyword: they operate only on their arguments.
 */

// Add two complex numbers and return the result.
Complex.add = function (a, b) {
 return new Complex(a.x + b.x, a.y + b.y);
};

// Subtract one complex number from another.
Complex.subtract = function (a, b) {
 return new Complex(a.x - b.x, a.y - b.y);
};

/ Multiply two compl/
C

 a.x * b.y + a.y * b.x);
};

// Here are some useful pred
// They are defined as class properties, where they can be used as
// "constants." (Note, though, that they are not actually read-only.)
Complex.zero = new Complex(0,0);
Complex.one = new Complex(1,0);
Complex.i = new Complex(0,1);

8.5.7 Superclasses and Subclasses

In Java, C++, and other class-based object-oriented languages, there is
of the class hierarchy. Every class can have a superclass from which it inherits properti

and methods. Any class can be extended, or subclassed, so that the resulting subclass
inherits its behavior. As we've seen, JavaScript supports prototype inheritance instead of
class-based inheritance. Still, JavaScript analogies to the class hierarchy can be drawn. In

ect class is the most generic, and all other classes are specialized
 that Object is the superclass of all
ods (described later in this

ter) from Object.

t
t; it is created with the Object() constructor. This

, an

ct

me name in

Object.prototype. For ex s definition shown in mple 8-6

JavaScript, the Obj
versions, or subclasses, of it. Another way to say this is

built-in classes. All classes inherit a few basic meththe
hapc

We've learned that objects inherit properties from the prototype object of their
constructor. How do they also inherit properties from the Object class? Remember tha
the prototype object is itself an objec
means the prototype object itself inherits properties from Object.prototype! So
object of class Complex inherits properties from the Complex.prototype object, which
itself inherits properties from Object.prototype. Thus, the Complex object inherits
properties of both objects. When you look up a property in a Complex object, the obje
itself is searched first. If the property is not found, the Complex.prototype object is
searched next. Finally, if the property is not found in that object, the Object.prototype
object is searched.

Note that because the Complex prototype object is searched before the Object prototype
object, properties of Complex.prototype hide any properties with the sa

ample, in the clas Exa , we
e

found first.

sses of Object. This is typical
ny need to produce a more complex

r, it is possible to subclass any other class. For
xample, suppose we want to produce a subclass of Complex in order to add some more

 this.y = imaginary;

s to this subclass.
MoreComplex.prototype.swap = function() {
 var tmp = this.x;

defined a toString() method in the Complex.prototype object. Object.prototyp
also defines a method with this name, but Complex objects never see it because the
definition of toString() in Complex.prototype is

The classes we've shown in this chapter are all direct subcla
of JavaScript programming; there is not usually a
class hierarchy. When necessary, howeve
e
methods. To do this, we simply have to make sure that the prototype object of the new
class is itself an instance of Complex, so that it inherits all the properties of
Complex.prototype:

// This is the constructor for the subclass.
function MoreComplex(real, imaginary) {
 this.x = real;

}

// We force its prototype to be a Complex object. This means that
// instances of our new class inherit from MoreComplex.prototype,
// which inherits from Complex.prototype, which inherits from
// Object.prototype.
MoreComplex.prototype = new Complex(0,0);

// Now add a new method or other new feature

 this.x = this.y;
 this.y = tmp;
}

There is one subtle shortcoming to the subclassing technique shown here. Since we
pe to an object of our own creation, we overwrite

 we

ect, however,
rits the constructor property of its superclass, rather than having one of its own.

n is to set this property explicitly:

y is read-only and cannot

ame value:

object["property"]

 the
property nam e e'll see

 C, C++, Java, and similar strongly typed languages, an object can have only a fixed

,

. Strings are JavaScript data types, so
they can be manipulated and created while a program is running. So, for example, you

explicitly set MoreComplex.prototy
the prototype object provided by JavaScript and discard the constructor property
are given. This property, described later in thisconstructor chapter, is supposed to refer

e constructor function that created the object. A MoreComplex objto th
nhei

One solutio

MoreComplex.prototype.constructor = MoreComplex;

Note, however, that in JavaScript 1.1, the constructor propert
be set in this way.

8.6 Objects as Associative Arrays
We've seen the . operator used to access the properties of an object. It is also possible to
use the [] operator, which is more commonly used with arrays, to access these
properties. Thus, the following two JavaScript expressions have the s

object.property

The important difference to note between these two syntaxes is that in the first,
e is an identifier, and in the second, the property nam is a string. W

why this is so important shortly.

In
number of properties, and the names of these properties must be defined in advance.
Since JavaScript is a loosely typed language, this rule does not apply -- a program can
create any number of properties in any object. When you use the . operator to access a
property of an object, however, the name of the property is expressed as an identifier.
Identifiers must be typed literally into your JavaScript program -- they are not a data type
so they cannot be manipulated by the program.

On the other hand, when you access a property of an object with the [] array notation,
the name of the property is expressed as a string

could write the following code in JavaScript:

var addr = "";

for(i = 0; i < 4; i++) {
 addr += customer["address" + i] + '\n';
}

exibility of using array notation to access
essions. We could have written this example using

de something like this:

_name_from_user();
er_of_shares();

ortfolio[stock_name] = shares;

 object. You can use the operator, however, because it uses a string value

makes them seem like the static objects of C++ and
Java, and they work perfectly well in that capacity. But they also have the powerful

 Perl arrays than C++ or Java objects.

This code reads and concatenates the address0, address1, address2, and address3
properties of the customer object.

This brief example demonstrates the fl
properties of an object with string expr
the . notation, but there are cases where only the array notation will do. Suppose, for
example, that you are writing a program that uses network resources to compute the
current value of the user's stock market investments. The program allows the user to type
in the name of each stock she owns, as well as the number of shares of each stock. You
might use an object named portfolio to hold this information. The object has one
property for each stock. The name of the property is the name of the stock and the
property value is the number of shares of that stock. So, for example, if a user holds 50
shares of stock in IBM, the portfolio.ibm property has the value 50.

Part of this program needs to have a loop that prompts the user to enter the name of a
stock she owns and then asks her to enter the number of shares she owns of that stock.
Inside the loop, you'd have co

var stock_name = get
ar shares = get_numb

_stock
v
p

Since the user enters stock names at runtime, there is no way that you can know the
property names ahead of time. Since you can't know the property names when you write
the program, there is no way you can use the . operator to access the properties of the
portfolio []
(which is dynamic and can change at runtime), rather than an identifier (which is static
and must be hardcoded in the program), to name the property.

When an object is used this fashion, it is often called an associative array -- a data
structure that allows you to dynamically associate arbitrary values with arbitrary strings.
JavaScript objects are actually implemented internally as associative arrays. The .
notation for accessing properties

ability to associate values with arbitrary strings. In this respect, JavaScript objects are
much more like

Chapter 6 introduced the loop. The real power ofor/in f this JavaScript stat
tive arrays. To return to

ement
the stock

fter the user has entered her
folio and we are computing its current total value:

becomes clear when we consider its use with associa
folio example, we might use the following code aport

ortp

var value = 0;
for (stock in portfolio) {
 // For each stock in the portfolio, get the per share value

ks aren't
perty names from the

r JavaScript object) named portfolio.

.7 Object Properties and Methods

object has a constructor property that refers to the

constructor property, of course; instead, this property is inherited from the prototype
h

r function you define and assigns that object to the prototype property of the
onstructor. What I did not reveal earlier, however, is that the prototype object is not

rty
u

e the following to determine the type of an unknown object:

 // and multiply it by the number of shares.
 value += get_share_value(stock) * portfolio[stock];
}

We cannot write this code without the for/in loop because the names of the stoc
known in advance. This is the only way to extract those pro
associative array (o

8
As we discussed earlier, all objects in JavaScript inherit from the Object class. While
more specialized classes, such as the built-in String class or a user-defined Complex
class, define properties and methods of their own, all objects, whatever their class, also
support the properties and methods defined by the Object class. Because of their
universality, these properties and methods are of particular interest.

8.7.1 The constructor Property

Starting with JavaScript 1.1, every
constructor function used to initialize the object. For example, if I create an object o with
the Complex() constructor, the property o.constructor refers to Complex:

var o = new Complex(1,2);
o.constructor == Complex; // Evaluates to true

Each Complex object (or object of whatever type) does not have its own unique

object. As discussed earlier in this chapter, JavaScript creates a prototype object for eac
onstructoc

c
initially empty. When created, it includes a constructor property that refers to the
constructor function. That is, for any function f, f.prototype.constructor is always
equal to f (unless we set it to something else).

Since the constructor function defines the class of an object, the constructor prope
can be a powerful tool for determining the type of any given object. For example, yo

ight use code likm

if ((typeof o == "object") && (o.constructor == Date))
 // Then do something with the Date object...

The existence of the constructor property is not always guaranteed, however. The
author of a class might replace the prototype object of a constructor with an entirely new

ot have a valid constructor property.

epresents
od

 such as alert() or document.write().

he default toString() method is not very informative. For example, the following
lines of code simply cause the browser to display the string "[object Object]":[6]

object, for example, and the new object might n

8.7.2 The toString() Method

The toString() method takes no arguments; it returns a string that somehow r
the type and/or value of the object on which it is invoked. JavaScript invokes this meth
of an object whenever it needs to convert the object to a string. This occurs, for example,
when you use the + operator to concatenate a string with an object or when you pass an
object to a method

T

 In client-side JavaScript in Netscape, if the language attribute of the <script> tag is explicitly set to "JavaScript1.2", the

formation, many classes
ons of toString(). For example, when an array is converted to a

ments, themselves each converted to a string, and
 obtain the source code for the function.

cts

toString() eaningful
s

[6]

toString() method behaves differently: it displays the names and values of all the fields of the object, using object literal notation.
This violates the ECMAScript specification.

c = new Circle(1, 0, 0);
document.write(c);

Because this default method does not display much useful in
define their own versi
string, we obtain a list of the array ele
when a function is converted to a string, we

The idea behind toString() is that each class of objects has its own particular string
representation, so it should define an appropriate toString() method to convert obje
to that string form. Thus, when you define a class, you should define a custom

 method for it so that instances of the class can be converted to m
strings. The string should contain information about the object being converted, as this i
useful for debugging purposes. If the string conversion is chosen carefully, it can also be
useful in programs themselves.

The following code shows a toString() method we might define for the Circle class of
Example 8-5:

Circle.prototype.toString = function () {
 return "[Circle of radius " + this.r + ", centered at ("
 + this.x + ", " + this.y + ").]";
}

With this toString() method defined, a typical Circle object might be converted to the
string "[Circle of radius 1, centered at (0,0).]".

If you look back at Example 8-6, you'll see that it defines a toString() method for our
Complex class of complex numbers.

One interesting feature of the default toString() method defined by the Object class is

",
lass of "Date".

The built-in Math object has a class of "Math", and all Error objects (including
lass of "Error". Client-side JavaScript

objects and any other objects defined by the JavaScript implementation have an

,
f "Object".

vides useful information that is not supplied by the

lier,

efault toString() method defined by Object. Because classes often define their own
versions of this method, we cannot simply invoke the tring() method of an object:

o.toString() // May invoke a customized toString() method for the

toString()
oString object and use the apply() method of the function to

We can use this technique to define a function that provides enhanced "type of"
functionality:

// An enhanced "type of" function. Returns a string that describes the
// type of x. Note that it returns "Object" for any user-defined object
types.
function Typeof(x) {
 // Start with the typeof operator

that it reveals some internal type information about built-in objects. This default
toString() method always returns a string of the form:

[object class]

class is the internal type of the object and usually corresponds to the name of the
lass of "Arrayconstructor function for the object. For example, Array objects have a c

unction objects have a class of "Function", and Date objects have a cF

instances of the various Error subclasses) have a c

implementation-defined class (such as "Window", "Document", or "Form"). User-
defined objects, such as the Circle and Complex classes defined earlier in this chapter
always have a class o

Note that this class value pro typeof
operator (which returns either "Object" or "Function" for all objects). The class value
provides information like that provided by the constructor property described ear
but the class value provides it in the form of a string, instead of in the form of a
constructor function. The only way to obtain this class value, however, is through the
d

toS

object

Instead, we have to refer explicitly to the default function as the
Object.prototype.t
invoke it on the desired object:

Object.prototype.toString.apply(o); // Always invokes the default
oString() t

 var t = typeof x;
 // If the result is not vague, return it
 if (t != "object") return t;
 // Otherwise, x is an object. Get its class value to try to
 // find out what kind of object it is.
 var c = Object.prototype.toString.apply(x); // Returns "[object
class]"

length-1); // Strip off "[object"
and "]"
 return c;

8.7.3 The toLocaleString() Method

 ECMAScript v3 and JavaScript 1.5, the Object class defines a toLocaleString()
ethod in addition to its toString() method. The purpose of this method is to return a

localized string representation of the object. The default toLocaleString() method
efined by Object doesn't do any localization itself; it always return exactly the same
ing as toString(). Subclasses, however, may define their own versions of

. In ECMAScript v3, the Array, Date, and Number classes do define
oLocaleString() methods that return localized values.

.7.4 The valueOf() Method

he valueOf() method is much like the toString() method, but it is called when
vaScript needs to convert an object to some primitive type other than a string --

ber. Where possible, the function should return a primitive value that
mehow represents the value of the object referred to by the this keyword.

y definition, objects are not primitive values, so most objects do not have a primitive
quivalent. Thus, the default valueOf() method defined by the Object class performs

ply returns the object on which it is invoked. Classes such as
umber and Boolean have obvious primitive equivalents, so they override the valueOf(
 method to return appropriate primitive values. This is why Number and Boolean objects
an behave so much like their equivalent primitive values.

ccasionally, you may define a class that has some reasonable primitive equivalent. In
is case, you may want to define a custom valueOf() method for the class. If you refer

ack to Example 8-6

 c = c.substring(8, c.

}

In
m

d
th
toLocaleString()
t

8

T
Ja
typically, a num
so

B
e
no conversion and sim
N
)
c

O
th
b , you'll see that we defined a valueOf() method for the Complex
lass. This method simply returned the real part of the complex number. Thus, when a

Complex object is used in a numeric context, it behaves as if it were a real number
ithout its imaginary component. For example, consider the following code:

ar a = new Complex(5,4);
ar b = new Complex(2,1);
ar c = Complex.subtract(a,b); // c is the complex number {3,3}
ar d = a - b; // d is the number 3

c

w

v
v
v
v

One note of caution about defining a valueOf() method: the valueOf() method can,
 some circumstances, take priority over the toString() method when converting an

bject to a string. Thus, when you define a valueOf() method for a class, you may need
 be more explicit about calling the toString() method when you want to force an

bject of that class to be converted to a string. To continue with the Complex example:

lert("c = " + c); // Uses valueOf(); displays "c = 3"
alert("c = " + c.toString()); // Displays "c = {3,3}"

nherited

o.hasOwnProperty("undef"); // false: the property is not defined

The propertyIsEnumerable() method returns true if the object defines a property

 a for/in loop. Otherwise, it returns false. For example:

property exists and is
enumerable

ate restriction makes the function less useful, because a return value of false
erty is not enumerable or that it is enumerable but is an

 the object is the prototype object of the
false this method is similar to using the

bject. For example:

in
o
to
o

a

8.7.5 The hasOwnProperty() Method

The hasOwnProperty() method returns true if the object locally defines a noni
property with the name specified by the single string argument. Otherwise, it returns
false. For example:

var o = new Object();

o.hasOwnProperty("toString"); // false: toString is an inherited
property
Math.hasOwnProperty("cos"); // true: the Math object has a cos
property

8.7.6 The propertyIsEnumerable() Method

with the name specified by the single string argument to the method and if that property
would be enumerated by

var o = { x:1 };
o.propertyIsEnumerable("x"); // true:

o.propertyIsEnumerable("y"); // false: property doesn't exist
o.propertyIsEnumerable("valueOf"); // false: property isn't enumerable

Note that the ECMAScript specification states that propertyIsEnumerable()
considers only properties defined directly by the object, not inherited properties. This
unfortun
may mean either that the prop
inherited property.

8.7.7 The isPrototypeOf() Method

The isPrototypeOf() method returns true if
argument. Otherwise, it returns . Using
constructor property of an o

var o = new Object();
Object.prototype.isPrototypeOf(o); // true: o.constructor ==

 false

Object
Object.isPrototypeOf(o); //
o.isPrototypeOf(Object.prototype); // false
Function.prototype.isPrototypeOf(Object); // true: Object.constructor
== Function

Chapter 9. Arrays
Chapter 8 documented the JavaScript object type -- a composite data type that holds

is chapter documents arrays -- a composite data type that holds
lues. Note that the arrays we'll discuss in this chapter are different from the

ed in the previous chapter. Associative arrays associate values
ed in this chapter are just regular numeric arrays; they

ssociate values with non-negative integers.

rrays as separate types
for most of your JavaScript programming. To fully understand the behavior of objects

 object
yer of extra functionality. We see this when we use the typeof operator:

applied to an array value, it returns the string "object". Note that the extra functionality of
avaScript 1.1. Arrays are not supported in JavaScript 1.0.

This chapter documents basic array syntax, array programming techniques, and methods

.
Because JavaScript is an untyped language, an element of an array may be of any type,

of the same array may be of different types. Array elements may
ys, which allows you to create data structures that are arrays of

arrays.

9.1.1 Creating Arrays

ray();

cify

var a = new Array(5, 4, 3, 2, 1, "testing, testing");

named values. Th
numbered va
associative arrays describ

s describwith strings. The array
a

Throughout this book, we often treat objects and arrays as distinct data types. This is a
useful and reasonable simplification; you can treat objects and a

and arrays, however, you have to know the truth: an array is nothing more than an
with a thin la

arrays was introduced in J

that operate on arrays.

9.1 Arrays and Array Elements
An array is a data type that contains or stores numbered values. Each numbered value is
called an element of the array, and the number assigned to an element is called its index

and different elements
ven contain other arrae

In JavaScript 1.1 and later, arrays are created with the Array() constructor and the new
operator. You can invoke the Array() constructor in three distinct ways.

The first way is to call it with no arguments:

var a = new Ar

This method creates an empty array with no elements.

The second method of invoking the Array() constructor allows you to explicitly spe
values for the first n elements of an array:

In this form, the constructor takes a list of arguments. Each argument specifies an
e array starting with

 number of arguments passed to

Array() with a single numeric
argument, which specifies a length:

 creates an array with the specified number of elements (each of which has
d sets the array's length property to the value specified.[1]

element value and may be of any type. Elements are assigned to th
element 0. The length property of the array is set to the
the constructor.

The third way to invoke the constructor is to call it

var a = new Array(10);

This technique
the undefined value) an

[1] In client-side JavaScript in Netscape, if the language attribute of the <script> tag is explicitly set to "JavaScript1.2", this third
form of the Array() constructor behaves like the second form: it creates an array of length one and initializes that array element to the
constructor argument. This does not conform to the ECMAScript standard.

Finally, array literals provide another way to create arrays. An array literal allows us to
embed an array value directly into a JavaScript program in the same way that we define a
string literal by placing the string text between quotation marks. To create an array literal,
simply place a comma-separated list of values between square brackets. For example:

var b = [[1,{x:1, y:2}], [2, {x:3, y:4}]];

Chapter 3

var primes = [2, 3, 5, 7, 11];
var a = ['a', true, 4.78];

Array literals can contain object literals or other array literals:

 provides complete details on array literals.

9.1.2 Reading and Writing Array Elements

nce to the array should
 a non-negative integer

this syntax to both read and write the
alue of an element of an array. Thus, the following are all legal JavaScript statements:

You access an element of an array using the [] operator. A refere
pression that hasappear to the left of the brackets. An arbitrary ex

ackets. You can use value should be inside the br
v

value = a[0];
a[1] = 3.14;
i = 2;
a[i] = 3;
a[i + 1] = "hello";
a[a[i]] = a[0];

In some languages, the first element of an array is at index 1. In JavaScript (as in C, C++,
and Java), however, the first element of an array is at index 0.

As we saw in Chapter 8, the [] operator can also be used to access named object
properties:

my['salary'] *= 2;

This is a clue that tells us that objects and arrays are fundamentally the same thing.

Note that array indexes must be integers greater than or equal to 0 and less than 232 -1. If
you use a number that is too large, a negative number, or a floating-point number (or a
boolean, an object, or other value), JavaScript converts it to a string and uses the resulting
string as the name of an object property, not as an array index. Thus, the following line
creates a new property named "-1.23"; it does not define a new array element:

a[-1.23] = true;

9.1.3 Adding New Elements to an Array

In languages such as C and Java, an array has a fixed number of elements that must be
specified when you create the array. This is not the case in JavaScript -- an array can have
any number of elements, and you can change the number of elements at any time.

To add a new element to an array, simply assign a value to it:

a[10] = 10;

Arrays in JavaScript may be sparse. This means that array indexes need not fall into a
contiguous range of numbers; a JavaScript implementation may allocate memory only for
those array elements that are actually stored in the array. Thus, when you execute the
following lines of code, the JavaScript interpreter will typically allocate memory only for
array indexes 0 and 10,000, not for the 9,999 indexes between:

a[0] = 1;
a[10000] = "this is element 10,000";

Note that array elements can also be added to objects:

var c = new Circle(1,2,3);
c[0] = "this is an array element of an object!"

This example merely defines a new object property named "0", however. Adding array
elements to an object does not make it an array. Arrays created with the Array()
constructor or an array literal have some special features, explained below, that objects
do not share.

9.1.4 Array Length

All arrays, whether created with the Array() constructor or defined with an array
literal, have a special length property that specifies how many elements the array
contains. More precisely, since arrays can have undefined elements, the length property
is always one larger than the largest element number in the array. Unlike regular object
properties, the length property of an array is automatically updated to maintain this
invariant when new elements are added to the array. The following code illustrates:

var a = new Array(); // a.length == 0 (no elements defined)
a = new Array(10); // a.length == 10 (empty elements 0-9 defined)
a = new Array(1,2,3); // a.length == 3 (elements 0-2 defined)
a = [4, 5]; // a.length == 2 (elements 0 and 1 defined)
a[5] = -1; // a.length == 6 (elements 0, 1, and 5 defined)

ents 0, 1, 5, and 49

Remember that array indexes must be less than 232 -1, which means that the largest
possible value for the length property is 232 -1.

Probably the most common use of the length property of an array is to allow us to loop
through the elements of an array:

];
for(var i = 0; i < fruits.length; i++)
 alert(fruits[i]);

This example assumes, of course, that elements of the array are contiguous and begin at
element 0. If this were not the case, we would want to test that each array element was
defined before using it:

for(var i = 0; i < fruits.length; i++)
 if (fruits[i] != undefined) alert(fruits[i]);

The length property of an array is a read/write value. If you set length to a value
smaller than its current value, the array is truncated to the new length; any elements that
no longer fit are discarded and their values are lost. If you make length larger than its

it to

a[49] = 0; // a.length == 50 (elem
efined) d

var fruits = ["mango", "banana", "cherry", "pear"

current value, new, undefined elements are added at the end of the array to increase
the newly specified size.

Truncating an array by setting its length property is the only way that you can actually
orten an array. If you use the delete operator to delete an array element, that element

becomes undefined, but the length property does not change.

Note that although objects can be assigned array elements, they do not have a length
property. The length property, with its special behavior, is the most important feature of
arrays. The other features that make arrays different from objects are the various methods
defined by the Array class, which are described in Section 9.2

sh

.

9.1.5 Multidimensional Arrays

JavaScript does not support true multidimensional arrays, but it does allow you to
approximate them quite nicely with arrays of arrays. To access a data element in an array
of arrays, simply use the [] operator twice. For example, suppose the variable matrix is
an array of arrays of numbers. Every element matrix[x] is an array of numbers. To
access a particular number within this array, you would write matrix[x][y].

9.2 Array Methods
In addition to the [] operator, arrays can be manipulated through various methods
provided by the Array class. The following sections introduce these methods. Many of

ired in part by the Perl programming language; Perl programmers
erview only; complete details

can be found in the core reference section of this book.

9

The Array.join() method converts all the elements of an array to strings and
concatenates them. You can specify an optional string that is used to separate the
elements in the resulting string. If no separator string is specified, a comma is used. For
example, the following lines of code produce the string "1,2,3":

var a = [1, 2, 3]; // Create a new array with these three elements
var s = a.join(); // s == "1,2,3"

The following invocation specifies the optional separator to produce a slightly different
result:

 s == "1, 2, 3"

.join() method is the inverse of the
 an array by breaking up a string into pieces.

the methods were insp
may find them comfortingly familiar. As usual, this is an ov

.2.1 join()

s = a.join(", "); //

Notice the space after the comma. The Array
String.split() method, which creates

9.2.2 reverse()

The Array.reverse() method reverses the order of the elements of an array and
returns the reversed array. It does this in place -- in other words, it doesn't create a new
array with the elements rearranged, but instead rearranges them in the already existing
array. For example, the following code, which uses the reverse() and join()
methods, produces the string "3,2,1":

var a = new Array(1,2,3); // a[0] = 1, a[1] = 2, a[2] = 3
a.reverse(); // now a[0] = 3, a[1] = 2, a[2] = 1
var s = a.join(); // s == "3,2,1"

9.2.3 sort()

Array.sort() sorts the elements of an array in place and returns the sorted array. When
sort() is called with no arguments, it sorts the array elements in alphabetical order

rings to perform the comparison, if necessary):

var s = a.join(", "); // s == "apple, banana, cherry"

If an array contains undefined elements, they are sorted to the end of the array.

To sort an array into some order other than alphabetical, you must pass a comparison
function as an argument to sort(). This function decides which of its two arguments

orted array. If the first argument should appear before the
t

number greater than zero. And if the two values are equivalent (i.e., if their order is
irrelevant), the comparison function should return 0. So, for example, to sort array
elements into numerical rather than alphabetical order, you might do this:

var a = [33, 4, 1111, 222];
a.sort(); // Alphabetical order: 1111, 222, 33, 4
a.sort(function(a,b) { // Numerical order: 4, 33, 222, 1111
 return a-b; // Returns < 0, 0, or > 0, depending on order
 });

Note the convenient use of a function literal in this code. Since the comparison function
is used only once, there is no need to give it a name.

As another example of sorting array items, you might perform a case-insensitive
alphabetical sort on an array of strings by passing a comparison function that converts
both of its arguments to lowercase (with the toLowerCase() method) before comparing

(temporarily converting them to st

var a = new Array("banana", "cherry", "apple");
a.sort();

should appear first in the s
second, the comparison function should return a number less than zero. If the firs
argument should appear after the second in the sorted array, the function should return a

them. You can probably think of other comparison functions that sort numbers into
various esoteric orders: reverse numerical order, odd numbers before even numbers, etc.

f course, when the array elements you are
rings.

ntains the elements
y each of the

rguments to concat(). If any of these arguments is itself an array, it is flattened and its
elements are added to the returned array. Note, however, that concat() does not
recursively flatten arrays of arrays. Here are some examples:

var a = [1,2,3];
a.concat(4, 5) // Returns [1,2,3,4,5]
a.concat([4,5]); // Returns [1,2,3,4,5]
a.concat([4,5],[6,7]) // Returns [1,2,3,4,5,6,7]
a.concat(4, [5,[6,7]]) // Returns [1,2,3,4,5,[6,7]]

9.2.5 slice()

 specified array. Its two
he returned array
quent elements up to,
If only one argument is

ion to the end of the
tive to the last

e e last element in the
array, and an argument of -3 specifies the third from last element of the array. Here are
some examples:

var a = [1,2,3,4,5];
a.slice(0,3); // Returns [1,2,3]
a.slice(3); // Returns [4,5]
a.slice(1,-1); // Returns [2,3,4]
a.slice(-3,-2); // Returns [3]

9.2.6 splice()

The Array.splice() method is a general-purpose method for inserting or removing
elements from an array. splice() modifies the array in place; it does not return a new
array, as slice() and concat() do. Note that splice() and slice() have very
similar names but perform substantially different operations.

ments into an array, or
at appear after the insertion

The possibilities become more interesting, o
comparing are objects, rather than simple types like numbers or st

9.2.4 concat()

The Array.concat() method creates and returns a new array that co
of the original array on which concat() was invoked, followed b
a

The Array.slice() method returns a slice, or subarray, of the
arguments specify the start and end of the slice to be returned. T
contains the element specified by the first argument and all subse

. but not including, the element specified by the second argument
specified, the returned array contains all elements from the start posit

 relaarray. If either argument is negative, it specifies an array element
lement in the array. An argument of -1, for example, specifies th

splice() can delete elements from an array, insert new ele
perform both operations at the same time. Array elements th

or deletion are moved as necessary so that they remain contiguous with the rest of the
array. The first argument to splice() specifies the array position at which the insertion
and/or deletion is to begin. The second argument specifies the number of elements that
should be deleted from (spliced out of) the array. If this second argument is omitted, all
array elements from the start element to the end of the array are removed. splice()
returns an array of the deleted elements, or an empty array if no elements were deleted.
For example:

var a = [1,2,3,4,5,6,7,8];
a.splice(4); // Returns [5,6,7,8]; a is [1,2,3,4]
a.splice(1,2); // Returns [2,3]; a is [1,4]
a.splice(1,1); // Returns [4]; a is [1]

he first two arguments to splice() specify which array elements are to be deleted.
hese arguments may be followed by any number of additional arguments that specify
lements to be inserted into the array, starting at the position specified by the first
rgument. For example:

ar a = [1,2,3,4,5];
.splice(2,0,'a','b'); // Returns []; a is [1,2,'a','b',3,4,5]
a.splice(2,2,[1,2],3); // Returns ['a','b']; a is [1,2,[1,2],3,3,4,5]

ote that, unlike concat(), splice() does not flatten array arguments that it inserts.
hat is, if it is passed an array to insert, it inserts the array itself, not the elements of that
rray.

.2.7 push() and pop()

The push() and pop() methods allow us to work with arrays as if they were stacks.
he push() method appends one or more new elements to the end of an array and
turns the new length of the array.[2]

T
T
e
a

v
a

N
T
a

9

T
re The pop() method does the reverse: it deletes the

st element of an array, decrements the array length, and returns the value that it
moved. Note that both of these methods modify the array in place rather than producing

 modified copy of the array. The combination of push() and pop() allows us to use a
vaScript array to implement a first in, last out stack. For example:

[2] In Netscape, when the language attribute of the <script> tag is explicitly set to "JavaScript1.2", push() returns the last
lue it appends to the array, rather than the new length of the array.

ar stack = []; // stack: []
tack.push(1,2); // stack: [1,2] Returns 2
tack.pop(); // stack: [1] Returns 2
tack.push(3); // stack: [1,3] Returns 2
tack.pop(); // stack: [1] Returns 3
tack.push([4,5]); // stack: [1,[4,5]] Returns 2
tack.pop() // stack: [1] Returns [4,5]
tack.pop(); // stack: [] Returns 1

la
re
a
Ja

va

v
s
s
s
s
s
s
s

9.2.8 unshift() and shift()

he unshift() and shift() methods behave much like push() and pop(), except
at they insert and remove elements from the beginning of an array, rather than from the

nd. unshift() adds an element or elements to the beginning of the array, shifts the
xisting array elements up to higher indexes to make room, and returns the new length of
e array. shift() removes and returns the first element of the array, shifting all

subsequent elements down one place to occupy the newly vacant space at the start of the
array. For example:

var a = []; // a:[]
a.unshift(1); // a:[1] Returns: 1
a.unshift(22); // a:[22,1] Returns: 2
a.shift(); // a:[1] Returns: 22
a.unshift(3,[4,5]); // a:[3,[4,5],1] Returns: 3
a.shift(); // a:[[4,5],1] Returns: 3
a.shift(); // a:[1] Returns: [4,5]
a.shift(); // a:[] Returns: 1

Note the possibly surprising behavior of unshift() when it's invoked with multiple
ed

s
cessary) and outputs a comma-separated list of those strings. Note that the

output does not include square brackets or any other sort of delimiter around the array
value. For example:

[1,2,3].toString() // Yields '1,2,3'
["a", "b", "c"].toString() // Yields 'a,b,c'
[1, [2,'c']].toString() // Yields '1,2,c'

Note that toString() returns the same string the join() method does when it is
invoked with no arguments.[3]

T
th
e
e
th

arguments. Instead of being inserted into the array one at a time, arguments are insert
all at once (as with the splice() method). This means that they appear in the resulting
array in the same order in which they appeared in the argument list. Had the elements
been inserted one at a time, their order would have been reversed.

9.2.9 toString() and toLocaleString()

An array, like any JavaScript object, has a toString() method. For an array, this
method converts each of its elements to a string (calling the toString() methods of it
elements, if ne

[3] In Netscape, when the language attribute of the <script> tag is set to "JavaScript1.2", toString() behaves in a more
complex way. In this case, it converts arrays to strings that include square brackets, and includes quotation marks around array elements that
are strings, so that the resulting strings are valid array literal expressions.

toLocaleString() is the localized version of toString(). It converts each array
element to a string by calling the toLocaleString() method of the element, and then it
concatenates the resulting strings using a locale-specific (and implementation-defined)

separator string.

Chapter 10. Pattern Matching with
egular Expressions

 is an object that describes a pattern of characters. The JavaScript
Exp class represents regular expressions, and both String and RegExp define methods

t use regular expressions to perform powerful pattern-matching and search-and-
[1]

R
A regular expression
Reg
tha
replace functions on text.

[1] The term "regular expression" is an obscure one that dates back many years. The syntax used to describe a textual pattern is indeed a type of
expression. However, as we'll see, that syntax is far from regular! A regular expression is sometimes called a "regexp" or even an "RE."

JavaScript regular expressions were standardized in ECMAScript v3. JavaScript 1.2
implements a subset of the regular expression features required by ECMAScript v3, and
JavaScript 1.5 implements the full standard. JavaScript regular expressions are strongly
based on the regular expression facilities of the Perl programming language. Roughly
speaking, we can say that JavaScript 1.2 implements Perl 4 regular expressions, and
JavaScript 1.5 implements a large subset of Perl 5 regular expressions.

This chapter begins by defining the syntax that regular expressions use to describe textual
patterns. Then it moves on to describe the String and RegExp methods that use regular
expressions.

10.1 Defining Regular Expressions
In JavaScript, regular expressions are represented by RegExp objects. RegExp objects
may be created with the RegExp() constructor, of course, but they are more often
created using a special literal syntax. Just as string literals are specified as characters
within quotation marks, regular expression literals are specified as characters within a
pair of slash (/) characters. Thus, your JavaScript code may contain lines like this:

var pattern = /s$/;

This line creates a new RegExp object and assigns it to the variable pattern. This
particular RegExp object matches any string that ends with the letter "s". (We'll talk
about the grammar for defining patterns shortly.) This regular expression could have
equivalently been defined with the RegExp() constructor like this:

var pattern = new RegExp("s$");

Creating a RegExp object, either literally or with the RegExp() constructor, is the easy
part. The more difficult task is describing the desired pattern of characters using regular

expression syntax. JavaScript adopts a fairly complete subset of the regular expression
syntax used by Perl, so if you are an experienced Perl programmer, you already know
how to describe patterns in JavaScript.

Regular expression pattern specifications consist of a series of characters. Most
characters, including all alphanumeric characters, simply describe characters to be
matched literally. Thus, the regular expression /java/ matches any string that contains
the substring "java". Other characters in regular expressions are not matched literally, but
have special significance. For example, the regular expression /s$/ contains two
characters. The first, "s", matches itself literally. The second, "$", is a special
metacharacter that matches the end of a string. Thus, this regular expression matches any
string that contains the letter "s" as its last character.

The following sections describe the various characters and metacharacters used in
JavaScript regular expressions. Note, however, that a complete tutorial on regular
expression grammar is beyond the scope of this book. For complete details of the syntax,
consult a book on Perl, such as Programming Perl, by Larry Wall, Tom Christiansen, and
Jon Orwant (O'Reilly). Mastering Regular Expressions, by Jeffrey E.F. Friedl (O'Reilly),
is another excel

ral Characters

ve see selves literally in regular
ons. ports certain nonalphabetic

characters through escape sequences that begin with a backslash (\). For example, the
sequence \n matches a literal newline character in a string. Table 10

lent source of information on regular expressions.

10.1.1 Lite

As we' n, all alphabetic characters and digits match them
expressi JavaScript regular expression syntax also sup

-1 lists these
characters.

Table 10-1. Regular expression literal characters

Character Matches

Alphanumeric
character Itself

\0 The NUL character (\u0000)

\t Tab) (\u0009

\n Newline (\u000A)

\v Vertical tab (\u000B)

\f Form feed (\u000C)

\r Carriage return (\u000D)

\xnn The Latin character specified by the hexadecimal number nn; for

Table 10-1. Regular expression literal characters

Character Matches

example, \x0A is the same as \n

\uxxxx The Unicode character specified by the hexadecimal number xxxx;
for example, \u0009 is the same as \t

\cX The control character ^X; for example, \cJ is equivalent to the
newline character \n

A number of punctuation characters have special meanings in regular expressions. They
are:

^ $. * + ? = ! : | \ / () [] { }

ny of these punctuation characters literally in a regular expression, you must precede
em with a \. Other punctuation characters, such as quotation marks and @, do not have

special meaning and simply m

emember exactly which punctuati ers need to be escaped with a
ou may safely place a backslash befo aracter. On the

other hand, note that many letters and numbers have special meaning when preceded by a
lash, so any letters or numbers that you want to match literally should not be
ed with a backslash. To include a backslash character literally in a regular

ession, you must escape it with a backslash, of course. For example, the following
regular expression matches any string that includes a backslash: /\\/.

10.1.2 Character Classes

rs can be combined into character classes by placing them
ithin square brackets. A character class matches any one character that is contained

within it. Thus, the regular expression /[abc]/ matches any one of the letters a, b, or c.
Negated character classes can also be defined -- these match any character except those
contained within the brackets. A negated character class is specified by placing a caret (^)
as the first character inside the left bracket. The regexp /[^abc]/ matches any one
character other than a, b, or c. Character classes can use a hyphen to indicate a range of
characters. To match any one lowercase character from the Latin alphabet, use /[a-z]/,
and to match any letter or digit from the Latin alphabet, use /[a-zA-Z0-9]/.

We'll learn the meanings of these characters in the sections that follow. Some of these
characters have special meaning only within certain contexts of a regular expression and
are treated literally in other contexts. As a general rule, however, if you want to include
a
th

atch themselves literally in a regular expression.

If you can't r
backslash, y

on charact
re any punctuation ch

backs
escap
expr

Individual literal characte
w

Because certain character classes are commonly used, the JavaScript regular expression
syntax includes special characters and escape sequences to represent these common
classes. For example, \s matches the space character, the tab character, and any other
Unicode whitespace character, and \S matches any character that is not Unicode
whitespace. Table 10-2 lists these characters and summarizes character class syntax.
(Note that several of these character class escape sequences match only ASCII characters
and have not been extended to work with Unicode characters. You can explicitly define
your own Unicode character classes; for example, /[\u0400-04FF]/ matches any one
Cyrillic character.)

Table 10-2. Regular expression character classes

Character Matches

[...] Any one character between the brackets.

[^...] Any one character not between the brackets.

. Any character except newline or another Unicode line terminator.

\w Any ASCII word character. Equivalent to [a-zA-Z0-9_].

\W Any character that is not an ASCII word character. Equivalent to [^a-zA-
Z0-9_].

\s Any Unicode whitespace character.

\S Any character that is not Unicode whitespace. Note that \w and \S are not
the same thing.

\d Any ASCII digit. Equivalent to [0-9].

\D Any character other than an ASCII digit. Equivalent to [^0-9].

[\b] A literal backspace (special case).

Note that the special character class escapes can be used within square brackets. \s
matches any whitespace character and \d matches any digit, so /[\s\d]/ matches any
one whitespace character or digit. Note that there is one special case. As we'll see later,
the \b escape has a special meaning. When used within a character class, however, it
represents the backspace character. Thus, to represent a backspace character literally in a
regular expression, use the character class with one element: /[\b]/.

10.1.3 Repetition

With the regular expression syntax we have learned so far, we can describe a two-digit
number as /\d\d/ and a four-digit number as /\d\d\d\d/. But we don't have any way to
describe, for example, a number that can have any number of digits or a string of three

letters followed by an optional digit. These more complex patterns use regular expression
syntax that specifies how many times an element of a regular expression may be
repeated.

The characters that specify repetition always follow the pattern to which they are being
applied. Because certain types of repetition are quite commonly used, there are special
characters to represent these cases. For example, + matches one or more occurrences of
the previous pattern. Table 10-3 summarizes the repetition syntax. The following lines
show some examples:

/\d{2,4}/ // Match between two and four digits
/\w{3}\d?/ // Match exactly three word characters and an optional
digit
/\s+java\s+/ // Match "java" with one or more spaces before and after
/[^"]*/ // Match zero or more non-quote characters

Table 10-3. Regular expression repetition characters

Character Meaning

{n,m} Match the previous item at least n times but no more than m times.

{n,} Match the previous item n or more times.

{n} Match exactly n occurrences of the previous item.

? Match zero or one occurrences of the previous item. That is, the previous
item is optional. Equivalent to {0,1}.

+ Match one or more occurrences of the previous item. Equivalent to {1,}.

* Match zero or more occurrences of the previous item. Equivalent to {0,}.

Be careful when using the * and ? repetition characters. Since these characters may
match zero instances of whatever precedes them, they are allowed to match nothing. For
example, the regular expression /a*/ actually matches the string "bbbb", because the
string contains zero occurrences of the letter a!

 repetition

The repetition characters listed in Table 10-3

10.1.3.1 Non-greedy

 match as many times as possible while still
allowing any following parts of the regular expression to match. We say that the
repetition is "greedy." It is also possible (in JavaScript 1.5 and later -- this is one of the
Perl 5 features not implemented in JavaScript 1.2) to specify that repetition should be
done in a non-greedy way. Simply follow the repetition character or characters with a
question mark: ??, +?, *?, or even {1,5}?. For example, the regular expression /a+/
matches one or more occurrences of the letter a. When applied to the string "aaa", it
matches all three letters. But /a+?/ matches one or more occurrences of the letter a,

matching as few characters as necessary. When applied to the same string, this pattern
matches only the first letter a.

Using non-greedy repetition may not always produce the results you expect. Consider the
pattern /a*b/, which matches zero or more letters a followed by the letter b. When
applied to the string "aaab", it matches the entire string. Now let's use the non-greedy
version: /a*?b/. This should match the letter b preceded by the fewest number of a's
possible. When applied to the same string "aaab", you might expect it to match only the
last letter b. In fact, however, this pattern matches the entire string as well, just like the
greedy version of the pattern. This is because regular expression pattern matching is done
by finding the first position in the string at which a match is possible. The non-greedy
vers
returned; matches at subsequent chara even considered.

ernation, Grouping, and R es

e regular ar includes special characters for specifying alternatives,
grouping subexpressions, and referring to previous subexpressions. The | character

es alternatives. For example, /ab|cd|ef/ matches the string "ab" or the string
 the string "ef". And /\d{3}|[a-z]{4}/ matches either three digits or four

lowercase letters.

 alt t until a match is found. If the left
alternative matches, the right alternative is ignored, even if it would have produced a
"better" match. Thus, when the pattern /a|ab/ is applied to the string "ab", it matches

y the first letter.

Parentheses have several purposes in regular expressions. One purpose is to group
parate items into a single subexpression, so that the items can be treated as a single unit

by |, *, +, ?, and so on. For example, /java(script)?/ matches "java" followed by the
optional "script". And /(ab|cd)+|ef)/ matches either the string "ef" or one or more
repetitions of either of the strings "ab" or "cd".

Another purpose of parentheses in regular expressions is to define subpatterns within the
complete pattern. When a regular expression is successfully matched against a target
string, it is possible to extract the portions of the target string that matched any particular
parenthesized subpattern. (We'll see how these matching substrings are obtained later in
the chapter.) For example, suppose we are looking for one or more lowercase letters
followed by one or more digits. We might use the pattern /[a-z]+\d+/. But suppose we
only really care about the digits at the end of each match. If we put that part of the pattern
in parentheses (/[a-z]+(\d+)/), we can extract the digits from any matches we find, as
explained later.

A related use of parenthesized subexpressions is to allow us to refer back to a
subexpression later in the same regular expression. This is done by following a \
character by a digit or digits. The digits refer to the position of the parenthesized

ion of our pattern does match at the first character of the string, so this match is
cters are never

10.1.4 Alt eferenc

Th expression gramm

separat
"cd" or

Note that ernatives are considered left to righ

onl

se

subexpression within the regular expression. For example, \1 refers back to the first
subexpression and \3 refers to the third. Note that, because subexpressions can be nested
within others, it is the position of the left parenthesis that is counted. In the following
regular expression, for example, the nested subexpression ([Ss]cript) is referred to as
\2:

/([Jj]ava([Ss]cript)?)\sis\s(fun\w*)/

A reference to a previous subexpression of a regular expression does not refer to the
pattern for that subexpression, but rather to the text that matched the pattern. Thus,
references can be used to enforce a constraint that separate portions of a string contain
exactly the same characters. For example, the following regular expression matches zero
or more characters within single or double quotes. However, it does not require the
opening and closing quotes to match (i.e., both single quotes or both double quotes):

/['"][^'"]*['"]/

To require the quotes to match, we can use a reference:

/(['"])[^'"]*\1/

The \1 matches whatever the first parenthesized subexpression matched. In this example,
it enforces the constraint that the closing quote match the opening quote. This regular
expression does not allow single quotes within double-quoted strings or vice versa. It is
not legal to use a reference within a character class, so we cannot write:

/(['"])[^\1]*\1/

Later in this chapter, we'll see that this kind of reference to a parenthesized sub-
 expression search-and-replace operations.

In JavaScript 1.5 (but not JavaScript 1.2), it is possible to group items in a regular
expression without creating a numbered reference to those items. Instead of simply
grouping the item
the followin

/([Jj]ava(?:[Ss]cript)?)\sis\s(fun\w*)/

Here, the su grouping, so the ? repetition
character can be applied to the group. These modified parentheses do not produce a

ce, so in this regular expression, \2 refers to the text matched by (fun\w*).

expression is a powerful feature of regular

s within (and), begin the group with (?: and end it with). Consider
g pattern, for example:

bexpression (?:[Ss]cript) is used simply for

referen

Table 10-4 summarizes the regular expression alternation, grouping, and referencing
operators.

Table 10-4. Regular expression alternation, grouping, and reference
characters

Character Meaning

| Alternation. Match either the subexpressions to the left or the subexpression
to the right.

(...)
Grouping. Group items into a single unit that can be used with *, +, ?, |, and
so on. Also remember the characters that match this group for use with later
references.

(?:...) Grouping only. Group items into a single unit, but do not remember the
characters that match this group.

\n

Match the same characters that were matched when group number n was
first matched. Groups are subexpressions within (possibly nested)
parentheses. Group numbers are assigned by counting left parentheses from
left to right. Groups formed with (?: are not numbered.

10.1.5 Specifying Match Position

We've seen that many elements of a regular expression match a single character in a
string. For example, \s matches a single character of whitespace. Other regular
expression elements match the positions between characters, instead of actual characters.
\b , for example, matches a word boundary -- the boundary between a \w (ASCII word
character) and a \W (non-word character), or the boundary between an ASCII word
character and the beginning or end of a string.[2] Elements like \b do not specify any
characters to be used in a matched string; what they do specify, however, is legal
positions at which a match can occur. Sometimes these elements are called regular
expression anchors, because they anchor the pattern to a specific position in the search
string. The most commonly us attern to the
beginning of the string f the string.

haracter class (square brackets), where \b matches th acter.

For example
pression /

(not as a prefix, as it is in "JavaScript"), we might try the pattern /\sJava\s/, which
quires a space before and after the word. But there are two problems with this solution.
rst, it does not match "Java" if that word appears at the beginning or the end of a string,

ut only if it appears with space on either side. Second, when this pattern does find a
atch, the matched string it returns has leading and trailing spaces, which is not quite

ed anchor elements are ^, which ties the p
, and $, which anchors the pattern to the end o

[2] Except within a c e backspace char

, to match the word "JavaScript" on a line by itself, we could use the regular
^JavaScript$/. If we wanted to search for "Java" used as a word by itself ex

re
Fi
b
m

what we want. So instead of matching actual space characters with \s, we instead match
(or anchor to) word boundaries with \b. The resulting expression is /\bJava\b/. The
element \B anchors the match to a location that is not a word boundary. Thus, the pattern
/\B[Ss]cript/ matches "JavaScript" and "postscript", but not "script" or "Scripting".

In JavaScript 1.5 (but not JavaScript 1.2), you can also use arbitrary regular expressions
as anchor conditions. If you include an expression within (?= and) characters, it is a
look-ahead assertion, and it specifies that the following characters must match, without
actually matching them. For example, to match the name of a common programming
language, but only if it is followed by a colon, you could use
/[Jj]ava([Ss]cript)?(?=\:)/. This pattern matches the word "JavaScript" in
"J Nutshell"
be

If you instead introduce an assertion with (?! , it is a negative look-ahead assertion,
which specifies that the following characters must not match. For example,
/Java(?!Script)([A-Z]\w*)/ matches "Java" followed by a capital letter and any
number of additional ASCII word characters, as long as "Java" is not followed by
"Script". It matches "JavaBeans" but not "Javanese", and it matches "JavaScrip" but not
"JavaScript" or "JavaScripter".

Table 10-5

avaScript: The Definitive Guide", but it does not match "Java" in "Java in a
cause it is not followed by a colon.

 summarizes regular expression anchors.

Table 10-5. Regular expression anchor characters

Character Meaning

^
of a line.
Match the beginning of the string and, in multiline searches, the beginning

$ Match the end of the string and, in multiline searches, the end of a line.

\b
Match a word boundary. That is, match the position between a \w character
and a \W character or between a \w character and the beginning or end of a
string. (Note, however, that [\b] matches backspace.)

\B Match a position that is not a word boundary.

(?=p) A positive look-ahead assertion. Require that the following characters match
the pattern p, but do not include those characters in the match.

(?!p) A negative look-ahead assertion. Require that the following characters do
not match the pattern p.

10.1.6 Flags

T r. Regular expression flags
specify high-level pattern-matching rules. Unlike the rest of regular expression syntax,
flags are specified outside of the / characters; instead of appearing within the slashes,
they appear following the second slash. JavaScript 1.2 supports two flags. The i flag
specifies that pattern matching should be case-insensitive. The g flag specifies that
pattern matching should be global -- that is, all matches within the searched string should
be found. Both flags may be combined to perform a global case-insensitive match.

For example, to do a case-insensitive search for the first occurrence of the word "java"
(or "Java", "JAVA", etc.), we could use the case-insensitive regular expression

uld add the g

multiline mode. In this mode, if the string to be searched contains newlines, the ^ and $
a line in addition to matching the beginning and

end of a string. For example, the pattern /Java$/im matches "java" as well as "Java\nis
fun".

Table 10-6

here is one final element of regular expression gramma

/\bjava\b/i. And to find all occurrences of the word in a string, we wo
flag: /\bjava\b/gi.

JavaScript 1.5 supports an additional flag: m. The m flag performs pattern matching in

anchors match the beginning and end of

 summarizes these regular expression flags. Note that we'll see more about the
g flag later in this chapter, when we consider the String and RegExp methods used to
actually perform matches.

Table 10-6. Regular expression flags

Character Meaning

i Perform case-insensitive matching.

g ing after
the first match.
Perform a global match. That is, find all matches rather than stopp

m Multiline mode. ^ matches beginning of line or beginning of string, and $
matches end of line or end of string.

10.1.7 Perl RegExp Features Not Supported in JavaScript

We've said that ECMAScript v3 specifies a relatively complete subset of the regular
expression facilities from Perl 5. Advanced Perl features that are not supported by

syntax) flags

ECMAScript include the following:

• The s (single-line mode) and x (extended
• The \a, \e, \l, \u, \L, \U, \E, \Q, \A, \Z, \z, and \G escape sequences

• The positive look-behind(?<= anchor and the (?<! negative look-behind anchor

Until now, we've been discussing the grammar used to create regular expressions, but we
haven't examined how those regular expressions can actually be used in JavaScript code.
In this section, we discuss methods of the String object that use regular expressions to
perform pattern matching and search-and-replace operations. In the sections that follow
this one, we'll continue the discussion of pattern matching with JavaScript regular
expressions by discussing the RegExp object and its methods and properties. Note that
the discussion that follows is merely an overview of the various methods and properties
related to regular expressions. As usual, complete details can be found in the core
reference section of this book.

Strings support four methods that make use of regular expressions. The simplest is
search(). This method takes a regular expression argument and returns either the
character position of the start of the first matching substring, or -1 if there is no match.
For example, the following call returns 4:

"JavaScript".search(/script/i);

I ed to one by
passing it to the RegExp constructor. search() does not support global searches -- it
ignores the g flag of its regular expression argument.

The replace() method performs a search-and-replace operation. It takes a regular
expression as its first argument and a replacement string as its second argument. It
searches the string on which it is called for matches with the specified pattern. If the
regular expression has the g flag set, the replace() method replaces all matches in the
string with the replacement string; otherwise, it replaces only the first match it finds. If
the first argument to replace() is a string rather than a regular expression, the method
searches for that string literally rather than converting it to a regular expression with the
RegExp() constructor, as search() does. As an example, we could use replace() as

the word "JavaScript" throughout a string of

re numbered from left to right and that the
regular expression remembers the text that each subexpression matches. If a $ followed

• The (?# comment and the other extended (? syntaxes

10.2 String Methods for Pattern Matching

f the argument to search() is not a regular expression, it is first convert

follows to provide uniform capitalization of
text:

// No matter how it is capitalized, replace it with the correct
capitalization
text.replace(/javascript/gi, "JavaScript");

replace() is more powerful than this, however. Recall that parenthesized
subexpressions of a regular expression a

by a digit appears in the replacement string, replace() replaces those two characters
with the text that matched the specified subexpression. This is a very useful feature. W
can use it, for example, to replace straight quotes in a string with curly quotes, simulate
with ASCII characters:

// A quote is a quotation mark, followed by any number of
// non-quotation-mark characters (which we remember), followed
// by another quotation mark.
var quote = /"([^"]*)"/

e
d

g;
// Replace the straight quotation marks with "curly quotes,"

place(quote, "``$1''");

The replace() method has other important features as well, which are described in the
nd
t

The method is the most general of the String regular expression methods. It
ts argument to a regular

expression by passing it to the constructor) and returns an array that contains
s an

ven
 is the

ubstring that matched the first parenthesized expression, and so

on. To draw a parallel with the replace() method, a[n] holds the contents of $n.

// and leave the contents of the quote (stored in $1) unchanged.
text.re

"String.replace()" reference page in the core reference section. Most notably, the seco
argument to replace() can be a function that dynamically computes the replacemen
string.

match()
takes a regular expression as its only argument (or converts i

RegExp()
the results of the match. If the regular expression has the g flag set, the method return
array of all matches that appear in the string. For example:

"1 plus 2 equals 3".match(/\d+/g) // returns ["1", "2", "3"]

If the regular expression does not have the g flag set, match() does not do a global
search; it simply searches for the first match. However, match() returns an array e
when it does not perform a global search. In this case, the first element of the array
matching string, and any remaining elements are the parenthesized subexpressions of the
regular expression. Thus, if match() returns an array a, a[0] contains the complete
match, a[1] contains the s

For example, consider parsing a URL with the following code:

var url = /(\w+):\/\/([\w.]+)\/(\S*)/;
var text = "Visit my home page at http://www.isp.com/~david";
var result = text.match(url);
if (result != null) {
 var fullurl = result[0]; // Contains "http://www.isp.com/~david"
 var protocol = result[1]; // Contains "http"
 var host = result[2]; // Contains "www.isp.com"
 var path = result[3]; // Contains "~david"
}

Finally, there is one more feature of the match() method that you should know abou
The array it returns has a

t.
 all arrays do. When match() is invoked

on a nonglobal regular expression, however, the returned array also has two other
osition within the string at

copy of the target string. So
ty would be 21, since the

he result.input property
would hold the same string as the variable. Fo n r that does not

c(s). We'll
discuss the RegExp.exec() method a little later in this chapter.

"123,456,789".split(","); // Returns ["123","456","789"]

The split() method can also take a regular expression as its argument. This ability
makes the method more powerful. For example, we can now specify a separator character
that allows an arbitrary amount of whitespace on either side:

"1,2, 3 , 4 ,5".split(/\s*,\s*/); // Returns ["1","2","3","4","5"]

The split() method has other features as well. See the "String.split()" entry in the

atching m thods and properties
are described in the next two sections.

The RegExp() constructor takes one or two string arguments and creates a new RegExp

e

f
of

length property, as

properties: the propertindex y, which contains the character p
h begins; and the input property, which is a which the matc

in the previous code, the value of the result.index proper
ext. Tmatched URL begins at character position 21 in the t

text r a regular expressio
e the g flag set, calling s.match(r) returns the same value as r.exehav

The last of the regular expression methods of the String object is split(). This method
breaks the string on which it is called into an array of substrings, using the argument as a
separator. For example:

core reference section for complete details.

10.3 The RegExp Object
As mentioned at the beginning of this chapter, regular expressions are represented as
RegExp objects. In addition to the RegExp() constructor, RegExp objects support three
methods and a number of properties. An unusual feature of the RegExp class is that it
defines both class (or static) properties and instance properties. That is, it defines global
properties that belong to the RegExp() constructor as well as other properties that
belong to individual RegExp objects. RegExp pattern-m e

object. The first argument to this constructor is a string that contains the body of the
regular expression -- the text that would appear within slashes in a regular expression
literal. Note that both string literals and regular expressions use the \ character for escap
sequences, so when you pass a regular expression to RegExp() as a string literal, you
must replace each \ character with \\. The second argument to RegExp() is optional. I
supplied, it indicates the regular expression flags. It should be g, i, m, or a combination
those letters. For example:

// Find all five digit numbers in a string. Note the double \\ in this
case.
var zipcode = new RegExp("\\d{5}", "g");

The RegExp() constructor is useful when a regular expression is being dynamically
reated and thus cannot be represented with the regular expression literal syntax. For
xample, to search for a string entered by the user, a regular expression must be created at
untime with RegExp().

10.3.1 RegExp Methods for Pattern Matching

RegExp objects define two methods that perform pattern-matching operations; they
Exp pattern-
d described

 a String method
ec() method executes a regular expression on the specified

for a match. If it finds none, it returns null. If it does
ethod

the

Unlike the match() method, exec() returns the same kind of array whether or not the
regular expression has the global g flag. Recall that match() returns an array of matches
when passed a global regular expression. exec(), by contrast, always returns a single
match and provides complete information about that match. When exec() is called for a
regular expression that has the g flag, it sets the lastIndex property of the regular
expression object to the character position immediately following the matched substring.
When exec() is invoked a second time for the same regular expression, it begins its
search at the character position indicated by the lastIndex property. If exec() does not
find a match, it resets lastIndex to 0. (You can also set lastIndex to 0 at any time,
which you should do whenever you quit a search before you find the last match in one
string and begin searching another string with the same RegExp object.) This special
behavior allows us to call exec() repeatedly in order to loop through all the regular
expression matches in a string. For example:

var pattern = /Java/g;

c
e
r

behave similarly to the String methods described earlier. The main Reg
matching method is exec(). It is similar to the String match() metho
above, except that it is a RegExp method that takes a string, rather than
that takes a RegExp. The ex
string. That is, it searches the string
find one, however, it returns an array just like the array returned by the match() m
for nonglobal searches. Element 0 of the array contains the string that matched the
regular expression, and any subsequent array elements contain the substrings that
matched any parenthesized subexpressions. Furthermore, the index property contains
character position at which the match occurred, and the input property refers to the
string that was searched.

var text = "JavaScript is more fun than Java!";
var result;
while((result = pattern.exec(text)) != null) {
 alert("Matched `" + result[0] + "'" +
 " at position " + result.index +
 "; next search begins at " + pattern.lastIndex);
}

The other RegExp method is test(). test() is a much simpler method than exec
It takes a string and returns

().
 matches the regular expression:

var pattern = /java/i;
pattern.test("J

Calling est() is equivalent to calling exec(tr rn value
of exec() is not null. Because of this equiva ha
same way as the regular expression: it begins
searching the spe the position specified by lastInde if it finds a

lastIndex to the position of the character immediately f
. Thus, we can loop through a string using the test() method just as we can with

the exec() method.

The String methods search() , replace(), and match() do not use the
c() and test() do. In fact, the String methods simply rese

lastIndex() to 0. If you use exec() or test() on a pattern that has the et
and you are search le strings, you must either find all the matches i ng,
so that lastInde automatically reset to zero (this happens when the last search fails),
or you must explicitly set the lastIndex property to 0 yourself. If you forget to do this,
you may start searching a new string at some arbitrary position within the string rather
than from the beginning. Finally, remember that this special lastIndex behavior occurs
only for regular expressions with the g flag. exec() and test() e the lastIndex
property of RegExp objects that do not have the g flag.

10.3.2 RegEx Properties

p ob erties. The source property is a read-only string that
he text ular expression. The global property is a read-only boolean

value that specifies whether the regular expression has the g flag. The
rty is a read olean value that specifies whether the regular expression has

the i flag. The multiline property is a read-only boolean value that specifies whether
ular expre the m flag. The final property is lastInd ead

he g flag, this property stores the position in the string at which
the next search is to begin. It is used by the exec() and test() methods, as described
in the previous s

true if the string

avaScript"); // Returns true

t) and returning
lence, the test()

ue if the retu
method be ves the

exec() method when invoked for a global
cified string at x, and

match, it sets
match

ollowing the

lastIndex
t
g flag s

property as exe

ing multip
x

n each stri
 is

 ignor

p Instance

Each RegEx
contains t

ject has five prop
of the reg

ignoreCase
prope -only bo

the reg
integer. For patte

ssion has
rns with t

ex, a r -write

ection.

Chapter 11. Further Topics in

had they been covered earlier. Now that you have read through the
and are experienced with the core JavaScript language, you are
he more advanced and detailed concepts presented here. You may

prefer, however, to move on to other chapters and learn about the specifics of client-side
JavaScript before returning to this chapter.

11.1 Data Type Conversion
We've seen that JavaScript is an untyped language (or, perhaps more accurately, a loosely
typed or dynamically typed language). This means, for example, that we don't have to
specify the data type of a variable when we declare it. Being untyped gives JavaScript the
flexibility and simplicity that are desirable for a scripting language (although those
features come at the expense of rigor, which is important for the longer, more complex
programs often written in stricter languages such as C and Java). An important feature of
JavaScript's flexible treatment of data types is the automatic type conversions it performs.
For example, if you pass a number to the document.write() method, JavaScript
automatically converts that value into its equivalent string representation. Similarly, if
you test a string value in the condition of an if statement, JavaScript automatically
converts that string to a boolean value -- to false if the string is empty and to true
otherwise.

The basic rule is that when a value of one type is used in a context that requires a value of
some other type, JavaScript automatically attempts to convert the value as needed. So, for
example, if a number is used in a boolean context, it is converted to a boolean. If an
object is used in a string context, it is converted to a string. If a string is used in a numeric
context, JavaScript attempts to convert it to a number. Table 11-1

JavaScript
This chapter covers miscellaneous JavaScript topics that would have bogged down
previous chapters
preceding chapters

 tprepared to tackle

 summarizes each of
these conversions -- it shows the conversion that is performed when a particular type of
value is used in a particular context. The sections that follow the table provide more
detail about type conversions in JavaScript.

Table 11-1. Automatic data type conversions

Value Context in which value is used

 String Number Boolean Object

Undefined
value

"undefined" NaN false Error

null "null" 0 false Error

Table 11-1. Automatic data type conversions

Value Context in which value is used

 String Number Boolean Object

Nonempty
string As is Numeric value of string or

NaN
true String

object

Empty string As is 0 false String
object

0 "0" As is false Number
object

NaN "NaN" As is false Number
object

Infinity "Infinity" As is true Number
object

Negative
infinity

"-Infinity" As is true Number
object

Any other String value of true Number
number number As is object

true "true" 1 As is Boolean
object

false "false" 0 As is object
Boolean

Object toString() valueOf() or toString(
) or NaN

true As is

11.1.1 Object-to-Primitive Conversion

Table 11-1 specifies how JavaScript objects are converted to primitive values. Several
 additional discussion, however. First, note that

whenever a non-null context, it converts to true. This is true
for all objects (including all arrays and functions), even wrapper objects that represent

 the following objects convert
to true when used in a boolean context:

details of this conversion require
 object is used in a boolean

primitive values that convert to false. For example, all of
[1]

[1] Note, though, that in JavaScript 1.1 and 1.2 these objects all convert to false, which is ECMAScript compliant.

new Boolean(false) // Internal value is false, but object converts to
true
new Number(0)

new String("")
new Array()

Table 11-1 shows that objects are converted to num
method of the object. Most objects inherit the defau

bers by first calling the valueOf()
lt valueOf() method of Object,

which simply returns the object itself. Since the default valueOf() method does not
return a primitive value, JavaScript next tries to convert the object to a number by calling
its toString() method and converting the resulting string to a number.

s

empty string, which (as you can see in the table) converts to the number zero! Also, if an
array has a single element that is a number n, the array converts to a string representation

t,
NaN.[2]

This leads to interesting results for arrays. Recall that the toString() method of array
converts the array elements to strings, then returns the result of concatenating these
strings, with commas in between. Therefore, an array with no elements converts to the

of n, which is then converted back to n itself. If an array contains more than one elemen
or if its one element is not a number, the array converts to

[2] Note, however, that in JavaScript 1.1 and 1.2, when an array is used in a numeric context it is converted to its length.

Table 11-1 specifies how an object is converted when used in a string context and how it
is converted when used in a numeric context. However, there are a couple of places in
JavaScript where the context is ambiguous! The + operator and the comparison operators
(<, <=, >, and >=) operate on both numbers and strings, so when an object is used with
one of these operators, it is not clear whether it should be converted to a number or a
string. In most cases, JavaScript first attempts to convert the object by calling its

e
case, JavaScript then tries to convert the object to a string by calling its toString()

d with the +
toString()

because Date has both toString() and valueOf() methods. When a Date is used with
+, you almost always want to perform a string concatenation. But when using a Date with
the comparison operators, you almost always want to perform a numeric comparison to
determine which of two times is earlier than the other.

Most objects either don't have valueOf() methods or don't have valueOf() methods
that return useful results. When you use an object with the + operator, you usually get

valueOf() method. If this method returns a primitive value (usually a number), that
value is used. Often, however, valueOf() simply returns the unconv rted object; in this

method.

There is only one exception to this conversion rule: when a Date object is use
perator, conversion is performed with the method. This exception exists o

string concatenation rather than addition. When you use an object with a comparison
operator, you usually get string comparison rather than numeric comparison.

An object that defines a custom valueOf() method may behave differently. If you
define a valueOf() method that returns a number, you can use arithmetic and other
operators with your object, but adding your object to a string may not behave as you

expect: the toString() method is no longer called, and a string representation of the
number returned by valueOf() is concatenated to the string.

Finally, remember that valueOf() is not called toNumber(): strictly speaking, its job
is to convert an object to a reasonable primitive value, so some objects may have
valueOf() t return strings. methods tha

11.1.2 Explicit Type Conversions

Table 11-1 listed the automatic data type conv
possible to explicitly convert values from one

ersions that JavaScript performs. It is also
 type to another. JavaScript does not define

a cast operator as C, C++, and Java do, but it does provide similar facilities for converting

g(

e type. For example, you could convert any value x to a string with String(x)
ject(y).

here are a few other tricks that can be useful for performing explicit conversions. To
convert a value to a string, concatenate it with the empty string:

var x_as_string = x + "";

To force a value to a number, subtract zero from it:

var x_as_number = x - 0;

And to force a value to boolean, use the ! operator twice:

rt data to whatever type is
required, explicit conversions are usually unnecessary hey are occasionally helpful,

 and more precise.

11.1.3 Converting Numbers to Strings

ed in JavaScript.
Although it usually happens automatically, there are a couple of useful ways to explicitly

data values.

As of JavaScript 1.1 (and the ECMA-262 standard), Number() , Boolean(), Strin
), and Object() may be called as functions as well as being invoked as constructors.
When invoked in this way, these functions attempt to convert their arguments to the
appropriat
and convert any value y to an object with Ob

T

var x_as_boolean = !!x;

Because of JavaScript's tendency to automatically conve
. T

however, and can also be used to make your code clearer

The number-to-string conversion is probably the one most often perform

perform this conversion. We saw two of them above:

var string_value = String(number); // Use the String() constructor

var string_value = number + ""; // Concatenate with the empty string

Another technique for converting numbers to strings is with the toString() method:

The toString() method of the Number object (primitive numbers are converted to
nal argument that
fy the argument, the

conversion is done in base 10. But you can also convert numbers in other bases (between
2 and 36).[3]

as a function

string_value = number.toString();

Number objects so that this method can be called) takes an optio
specifies a radix, or base, for the conversion. If you do not speci

 For example:

[3] Note that the ECMAScript specification supports the radix argument to the toString() method, but it allows the method to return
an implementation-defined string for any radix other than 10. Thus, conforming implementations may simply ignore the argument and always
return a base-10 result. In practice, implementations from Netscape and Microsoft do honor the requested radix.

var n = 17;
binary_string = n.toString(2); // Evaluates to "10001"
octal_string = "0" + n.toString(8); // Evaluates to "021"
hex_string = "0x" + n.toString(16); // Evaluates to "0x11"

A shortcoming of JavaScript prior to JavaScript 1.5 is that there is no built-in way to
convert a number to a string and specify the number of decimal places to be included, or
to specify whether exponential notation should be used. This can make it difficult to
display numbers that have traditional formats, such as numbers that represent monetary
values.

ECMAScript v3 and JavaScript 1.5 solve this problem by adding three new number-to-
string methods to the Number class. toFixed() converts a number to a string and
displays a specified number of digits after the decimal point. It does not use exponential
notation. toExponential() converts a number to a string using exponential notation,
with one digit before the decimal point and a specified number of digits after the decimal
point. toPrecision() displays a number using the specified number of significant
digits. It uses exponential notation if the number of significant digits is not large enough
to display the entire integer portion of the number. Note that all three of these methods
round the trailing digits of the resulting string as appropriate. Consider the following
examples:

var n = 123456.789;
n.toFixed(0); // "123457"
n.toFixed(2); // "123456.79"
n.toExponential(1); // "1.2e+5"
n.toExponential(3); // "1.235e+5"
n.toPrecision(4); // "1.235e+5"
n.toPrecision(7); // "123456.8"

var number = string_value - 0;

The trouble with this g-to-number conversion is strict. It
works only with base- s, and although it does allow leading and trailing spaces,
it does not s t

To allow m s, you can .
These func rn any num of a string, ignoring any
trailing no s o s
both intege
parseInt(

11.1.4 Converting Strings to Numbers

We've seen that strings that represent numbers are automatically converted to actual
numbers when used in a numeric context. As shown earlier, we can make this conversion
explicit:

var number = Number(string_value);

sort of strin
10 number

that it is overly

 allow any non-space character

ore flexible conversion
tions convert and retu

o appear in the string following the number.

 use parseInt() and parseFloat()
ber at the beginning

n-numbers. parseInt() parse
rs and floating-point numbers. If
) interprets it as a hexadecimal

nly integers, while parseFloat() parse
 a string begins with "0x" or "0X",
number.[4] For example:

(but not "0x" or "0X"), parseInt() may parse it as an octal [4] The ECMASc ays that if a string begins with "0"
number or as a de unspecified, y
leading zeros, un

parseInt(Ret
parseFloa 4 meters"); // Ret
arseInt("12.34"); // Returns 12
arseInt("0xFF"); // Returns 255

parseInt() can even take a second argument specifying the radix (base) of the number
to be parsed. Legal values are between 2 and 36. For example:

parseInt("11", 2); // Returns 3 (1*2 + 1)
parseInt("ff", 16); // Returns 255 (15*16 + 15)
parseInt("zz", 36); // Returns 1295 (35*36 + 35)
parseInt("077", 8); // Returns 63 (7*8 + 7)
parseInt("077", 10); // Returns 77 (7*10 + 7)

If parseInt() or parseFloat() cannot convert the specified string to a number, it
returns NaN:

parseInt("eleven"); // Returns NaN
parseFloat("$72.47"); // Returns NaN

ript specification s
cimal number. Because the behavior is

less you explicitly specify the radix to be used!

"3 blind mice"); //
t("3.1

ou should never use parseInt() to parse numbers with

urns 3
urns 3.14

p
p

11.2 By Value Versus by Reference
ou

ons are performed in
that language.

e data values. These techniques
is the
e and

d the
 is

the datum is passed to the function; if the

um, the two distinct pieces of data must represent exactly the same value (which

 only
y of the value; references to that value are manipulated.

In JavaScript, as in all programming languages, there are three important ways that y
can manipulate a data value. First, you can copy it; for example, by assigning it to a new
variable. Second, you can pass it as an argument to a function or method. Third, you can
compare it with another value to see if the two values are equal. To understand any
programming language, you must understand how these three operati

There are two fundamentally distinct ways to manipulat
are called "by value" and "by reference." When a value is manipulated by value, it

lue of the datum that matters. In an assignment, a copy of the actual value is madva
that copy is stored in a variable, object property, or array element; the copy an
original are two totally independent valu

ssed by value to a function, a copy of
es that are stored separately. When a datum

pa
function modifies the value, the change affects only the function's copy of the datum -- it
does not affect the original datum. Finally, when a datum is compared by value to another
dat
usually means that a byte-by-byte comparison finds them to be equal).

The other way of manipulating a value is by reference. With this technique, there is
one actual cop [5] If a value is

references to it. It is these references that are copied, passed, and compared. So, in an
assignment made by reference, it is the reference to the value that is assigned, not a copy

s to the
to. Both references are equally valid and both

ca the value -- if the value is changed through one reference, that
e situation is similar when a value

are visible outside the function. Finally, when a value is compared to another by

[5] C programmers and anyone else familiar with the concept of pointers should understand the idea of a reference in this context. Note,
however, that JavaScript does not support pointers.

manipulated by reference, variables do not hold that value directly; they hold only

of the value and not the value itself. After the assignment, the new variable refer
same value that the original variable refers

n be used to manipulate
change also appears through the original reference. Th
is passed to a function by reference. A reference to the value is passed to the function,
and the function can use that reference to modify the value itself; any such modifications

reference, the two references are compared to see if they refer to the same unique copy of
a value; references to two distinct values that happen to be equivalent (i.e., consist of the
same bytes) are not treated as equal.

These are two very different ways of manipulating values, and they have important
implications that you should understand. Table 11-2 summarizes these implications. This
discussion of manipulating data by value and by reference has been a general one, but the
distinctions apply to all programming languages. The sections that follow explain how
these distinctions app

ly specifically to JavaScript; they discuss which data types are
manipulated by value and which are manipulated by reference.

Table 11-2. By value versus by reference

 By value By reference

Copy
The value is actually copied;
there are two distinct,

Only a reference to the value is copied. If the
value is modified through the new reference,
that change is also visible through the independent copies. original reference.

Pass to it have no effect outside the

A reference to the value is passed to the
value

through the passed reference, the
.

A distinct copy of the value is
passed to the function; changes function. If the function modifies the

function. modification is visible outside the function

Compare to see if they are the same

distinct values are not equal, even if the two

Two distinct values are
compared (often byte by byte)

Two references are compared to see if they
refer to the same value. Two references to

value. values consist of the same bytes.

11.2.1 Primitive Types and Reference Types

itive types are manipulated by value, and
erence types, as the name suggests, are manipulated by reference. Numbers and

booleans are primitive types in JavaScript -- primitive because they consist of nothing

types. Arrays and functions, which are specialized types of objects, are therefore also
ry numbers of properties or elements,

by value, as this could involve the inefficien d comparing of large amounts of

should be reference types. In fact, though, they are usually considered to be primitive
types in JavaScript simply because they are not objects. Strings don't actually fit into the
primitive versus reference type dichotomy. We'll have more to say about strings and their

Th
f
e basic rule in JavaScript is this: prim

re

more than a small, fixed number of bytes that are easily manipulated at the low
(primitive) levels of the JavaScript interpreter. Objects, on the other hand, are reference

reference types. These data types can contain arbitra
so they cannot be manipulated as easily as fixed-size primitive values can. Since object

 sense to manipulate these typesand array values can become quite large, it doesn't make
t copying an

memory.

What about strings? A string can have an arbitrary length, so it would seem that strings

behavior a little later.

The best way to explore the differences between data manipulation by value and by
reference is through example. Study the following examples carefully, paying attention to
the comments. Example 11-1 copies, passes, and compares numbers. Since numbers are
primitive types, this example illustrates data manipulation by value.

Example 11-1. Copying, passing, and comparing by value
// First we illustrate copying by value

var n = 1; // Variable n holds the value 1
var m = n; // Copy by value: variable m holds a distinct value 1

// Here's a function we'll use to illustrate passing by value
// As we'll see, the function doesn't work the way we'd like it to
function add_to_total(total, x)
{

y of

umbers contained in n and m by
value.

The value of n is copied, and that copied value is named total

py of m to that copy of n. But
adding

 affect the original value of n

ad _to_total(n, m);

 Now, we'll look at comparison by value.
/ In the following line of code, the literal 1 is clearly a distinct

are it to the value held in

// n. In comparison by value, the bytes of the two numbers are checked
to
// see if they are the same.
if (n == 1) m = 2; // n contains the same value as the literal 1; m is
now 2

Now, consider Example 11-2

 total = total + x; // This line changes only the internal cop
total
}

// Now call the function, passing the n

//
within the
// function. The function adds a co

// something to a copy of n doesn't
outside
// of the function. So calling this function doesn't accomplish
ything. an
d

//
/
numeric
// value encoded in the program. We comp
variable

. This example copies, passes, and compares an object.
Since objects are reference types, these manipulations are performed by reference. This
example uses Date objects, which you can read more about in the core reference section
of this book.

Example 11-2. Copying, passing, and comparing by reference

th variables now refer to the same object

as well

// Here we create an object representing the date of Christmas, 2001
// The variable xmas contains a reference to the object, not the object
itself
var xmas = new Date(2001, 11, 25);

// When we copy by reference, we get a new reference to the original
object
var solstice = xmas; // Bo
value

// Here we change the object through our new reference to it
solstice.setDate(21);

// The change is visible through the original reference,

xmas.getDate(); // Returns 21, not the original value of 25

 the function can change the contents of the array through

 totals[1] = totals[1] + x;
 totals[2] = totals[2] + x;

 find they are
// equal, because they refer to the same object, even though we were

Before we leave the topic of manipulating objects and arrays by reference, we need to

allows a function to assign new values to its arguments and to have those modified values
visible outside t . Here, we
mean simply tha passed to a
function. A function c ference to erties of th

on overwrites the reference with a reference to a new object
hat modification is not visible of the function. Readers familiar with the
ning of may prefer to say that objects and a e passed by value,

a reference rather than the object itself. Example

// The same is true when objects and arrays are passed to functions.
// The following function adds a value to each element of an array.
// A reference to the array is passed to the function, not a copy of
the array.
// Therefore,
// the reference, and those changes will be visible when the function
returns.
function add_to_totals(totals, x)
{
 totals[0] = totals[0] + x;

}

// Finally, we'll examine comparison by reference.

the two variables defined above, we// When we compare

trying
/ to make them refer to different dates: /
(xmas == solstice) // Evaluates to true

// The two variables defined next refer to two distinct objects, both
// of which represent exactly the same date.
var xmas = new Date(2001, 11, 25);
var solstice_plus_4 = new Date(2001, 11, 25);

// But, by the rules of "compare by reference," distinct objects are
not equal!
(xmas != solstice_plus_4) // Evaluates to true

clear up a point of nomenclature. The phrase "pass by reference" can have several
meanings. To some readers, the phrase refers to a function invocation technique that

he function. This is not the way the term is used in this book
t a reference to an object or array -- not the object itself -- is

an use the re modify prop e object or elements
of the array. But if the functi
or array, t outside
other mea
but the value that is passed is actually

this term rrays ar

11-3 illustrates th

// This is another version of the add_to_totals() function. It
doesn't
// work, though, because instead of changing the array itself, it tries

is issue.

Example 11-3. References themselves are passed by value

to
// change the reference to the array.
function add_to_totals2(totals, x)

{
 newtotals = new Array(3);
 newtotals[0] = totals[0] + x;
 newtotals[1] = totals[1] + x;
 newtotals[2] = totals[2] + x;
 totals = newtotals; // This line has no effect outside of the
function
}

11.2.2 Copying and Passing Strings

 the primitive type versus
reference type dichotomy. Since strings are not objects, it is natural to assume that they
are primitive. If they are primitive types, then by the rules given above, they should be
manipulated by value. But since strings can be arbitrarily long, it would seem inefficient
to copy, pass, and compare them byte by byte. Therefore, it would also be natural to
assume that strings are implemented as reference types.

Instead of making assumptions about strings, suppose we write some JavaScript code to

ther

e charAt()
method returns the character at a given position in a string, but there is no corresponding

 to

erence, but in actuality it
doesn't matter, since it has no practical bearing on the code we write.

value
y

As mentioned earlier, JavaScript strings don't fit neatly into

experiment with string manipulation. If strings are copied and passed by reference, we
should be able to modify the contents of a string through the reference stored in ano
variable or passed to a function.

When we set out to write the code to perform this experiment, however, we run into a
major stumbling block: there is no way to modify the contents of a string. Th

setCharAt() method. This is not an oversight. JavaScript strings are intentionally
immutable -- that is, there is no JavaScript syntax, method, or property that allows you
change the characters in a string.

Since strings are immutable, our original question is moot: there is no way to tell if
strings are passed by value or by reference. We can assume that, for efficiency,
JavaScript is implemented so that strings are passed by ref

11.2.3 Comparing Strings

Despite the fact that we cannot determine whether strings are copied and passed by
or by reference, we can write JavaScript code to determine whether they are compared b
value or by reference. Example 11-4 shows the code we might use to make this
determination.

Example 11-4. Are strings compared by value or by reference?
// Determining whether strings are compared by value or reference is
easy.

// We compare two clearly distinct strings that happen
same

 to contain the

if

g

// characters. If they are compared by value they will be equal, but
they
// are compared by reference, they will not be equal:
var s1 = "hello";
var s2 = "hell" + "o";
if (s1 == s2) document.write("Strings compared by value");

This experiment demonstrates that strings are compared by value. This may be surprisin
to some programmers. In C, C++, and Java, strings are reference types and are compared
by reference. If you want to compare the actual contents of two strings, you must use a
special method or function. JavaScript, however, is a higher-level language and
recognizes that when you compare strings, you most often want to compare them by
value. Thus, despite the fact that, for efficiency, JavaScript strings are (presumably)
copied and passed by reference, they are compared by value.

11.2.4 By Value Versus by Reference: Summary

Table 11-3 summarizes the way that the various JavaScript types are manipulated.

Table 11-3. Data type manipulation in JavaScript

Type Copied by Passed by Compared by

Number Value Value Value

Boolean Value Value Value

String Immutable Immutable Value

Object Reference Reference Reference

11.3 Garbage Collection
As explained in Chapter 4, JavaScript uses garbage collection to reclaim the memory
occupied by strings, objects, arrays, and functions that are no longer in use. This frees
you, the programmer, from having to explicitly deallocate memory yourself and is an
important part of what makes JavaScript programming easier than, say, C programming.

A key feature of garbage collection is that the garbage collector must be able to
determine when it is safe to reclaim memory. Obviously, it must never reclaim values
that are still in use and should collect only values that are no longer reachable; that is,
values that cannot be referred to through any of the variables, object properties, or array
elements in the program. If you are the curious type, you may be wondering just how a
garbage collector distinguishes between garbage to be collected and values that are still

being used or that could potentially be used. The following sections explain some of the
gory details.

ay

A mark-and-sweep garbage collector periodicall

s and
ge

collector is able to find (and mark) every single value that is still reachable. It follows,
then, that any unmarked values are unreachable and are therefore garbage.

Once a mark-and-sweep garbage collector has finished marking all reachable values, it
begins its sweep phase. During this phase, it looks through the list of all values in the
environment and deallocates any that are not marked. Classic mark-and-sweep garbage
collectors do a complete mark and a complete sweep all at once, which causes a

eed to

JavaScript implementations use some kind of mark-and-sweep garbage collection.
.1, as implemented in Netscape 3, used a somewhat simpler

garbage-collection sch that has some shortcomings. If you are writing JavaScript
e following section explains the shortcomings
etscape 2 used an even simpler garbage-

nique with serious flaws. Since that browser is now entirely obsolete, the

11.3.2 Garbage Collection by Reference Counting

11.3.1 Mark-and-Sweep Garbage Collection

The computer science literature on garbage collection is large and technical; the actual
operation of the garbage collector is really an implementation-specific detail that m
vary in different implementations of the language. Still, almost all serious garbage
collectors use some variation on a basic garbage-collection algorithm known as "mark
and sweep."

y traverses the list of all variables in the
JavaScript environment and marks any values referred to by these variables. If any
referenced values are objects or arrays, it recursively marks the object propertie
array elements. By recursively traversing this tree or graph of values, the garba

noticeable slowdown in the system during garbage collection. More sophisticated
variations on the algorithm make the process relatively efficient and perform collection in
the background, without disrupting system performance.

The details of garbage collection are implementation-specific, and you should not n
know anything about the garbage collector to write JavaScript programs. All modern

However, JavaScript 1
eme

code to be compatible with Netscape 3, th
 collector in that browser. Nof the garbage

llection techco
details are not described here.

In JavaScript 1.1, as implemented in Netscape 3, garbage collection is performed by
reference counting. This means that every object (whether a user object created by
JavaScript code or a built-in HTML object created by the browser) keeps track of the
number of references to it. Recall that objects are assigned by reference in JavaScript,
rather than having their complete values copied.

When an object is created and a reference to it is stored in a variable, the object's
reference count is one. When the reference to the object is copied and stored in another

variable, the reference count is incremented to two. When one of the two variables th
holds these references is overwritten with some new value, the object's reference coun

at
t is

decremented back to one. If the reference count reaches zero, there are no more
ver again be a

ry associated with it.

fortunately, there are shortcomings to using reference counting as a garbage-collection

mark-and-sweep garbage
n that is easy to

wever,
you need

T as to do with cyclical references. If object A
contains a reference to object B and object B contains a reference to object A, a cycle of

w
is

ple garbage-collection
scheme. The only way to prevent this problem is by manual intervention. If you create a
cycle of objects, you must recognize this fact and take steps to ensure that the objects are
garbage collected when they are no longer needed. To allow a cycle of objects to be
garbage collected, you must break the cycle. You can do this by picking one of the
objects in the cycle and setting the property of it that refers to the next object to null. For
example, suppose that A, B, and C are objects that each have a next property, and the
value of this property is set so that these objects refer to each other and form a cycle.
When these objects are no longer in use, you can break the cycle by setting A.next to
null. This means that object B no longer has a reference from A, so its reference count
can drop to zero and it can be garbage collected. Once it has been garbage collected, it
will no longer refer to C, so C's reference count can drop to zero and it can be garbage
collected. Once C is garbage collected, A can finally be garbage collected.

Note, of course, that none of this can happen if A, B, and C are stored in global variables
in a window that is still open, because those variables A, B, and C still refer to the
objects. If these were local variables in a function and you broke their cycle before the
function returned, they could be garbage collected. But if they are stored in global
variables, they remain referenced until the window that contains them closes. In this case,
if you want to force them to be garbage collected, you must break the cycle and set all the
variables to null:

references to the object. Since there are no references to copy, there can ne
reference to the object in the program. Therefore, JavaScript knows that it is safe to
destroy the object and garbage collect the memo

Un
scheme. In fact, some people don't even consider reference counting to be true garbage
collection and reserve that term for better algorithms, such as
collection. Reference counting is a simple form of garbage collectio
implement and works fine in many situations. There is an important situation, ho

rbage, and in which reference counting cannot correctly detect and collect all ga
to be aware of it.

he basic flaw with reference counting h

references exists. A cycle would also exist, for example, if A referred to B, B referred to
C, and C referred back to A. In cycles such as these, there is always a reference from
within the cycle to every element in the cycle. Thus, even if none of the elements of the
cycle has any remaining outside references, their reference counts will never drop belo
one and they can never be garbage collected. The entire cycle may be garbage if there
no way to refer to any of these objects from a program, but because they all refer to each
other, a reference-counting garbage collector cannot detect and free this unused memory.

This problem with cycles is the price that must be paid for a sim

A.next = null; // Break the cycle
A = B = C = null; // Remove the last remaining external references

t
scope in which they are defined, not the scope from which they are

executed. Prior to JavaScript 1.2, functions could be defined only in the global scope, and
lexical scoping was no all functions were executed in the same global

 chained to that global scope).

es of scope arise. For example, consider a function g defined within a function f. g is
 call
tly

cularly surprising:

var x = "global";
function f() {
 var x = "local";
 function g() { alert(x); }
 g();
}
f(); // Calling this function displays "local"

In JavaScript, however, functions are data just like any other value, so they can be
returned from functions, assigned to object properties, stored in arrays, and so on. This
does not cause anything particularly surprising either, except when nested functions are
involved. Consider the following code, which includes a function that returns a nested
function. Each time it is called, it returns a function. The JavaScript code of the returned
function is always the same, but the scope in which it is created differs slightly on each
invocation, because the values of the arguments to the outer function differ on each
invocation. If we save the returned functions in an array and then invoke each one, we'll
see that each returns a different value. Since each function consists of identical JavaScript
code and each is invoked from exactly the same scope, the only factor that could be
causing the differing return values is the scope in which the functions were defined:

// This function returns a function each time it is called
// The scope in which the function is defined differs for each call
function makefunc(x) {
 return function() { return x; }
}

// Call makefunc() several times, and save the results in an array:
var a = [makefunc(0), makefunc(1), makefunc(2)];

// Now call these functions and display their values.

11.4 Lexical Scoping and Nested Functions
Functions in JavaScript are lexically rather than dynamically scoped. This means tha
they run in the

t much of an issue:
 of the functionscope (with the call object

In JavaScript 1.2 and later, however, functions can be defined anywhere, and tricky
issu
always executed in the scope of f. Its scope chain includes three objects: its own
object, the call object of f(), and the global object. Nested functions are perfec
understandable when they are invoked in the same lexical scope in which they are
defined. For example, the following code does not do anything parti

// Although the body of each function is the same, the scope is
// different, and each call returns a different value:
alert(a[0]()); // Displays 0
alert(a[1]()); // Displays 1
alert(a[2]()); // Displays 2

The results of this code may be surprising. Still, they are the results expected from a strict
application of the lexical scoping rule: a function is executed in the scope in which it was
defined. That scope includes the state of local variables and arguments. Even though
local variables and function arguments are transient, their state is frozen and becomes
part of the lexical scope of any functions defined while they are in effect. In order to
make lexical scoping work with nested functions, a JavaScript implementation must use a
closure, which can be thought of as a combination of a function definition and the scope
chain that was in effect when the function was defined.

11.5 The Function() Constructor and Function
Literals
As we saw in Chapter 7, there are two ways to define functions other than the basic
functi
) const s.
You sh

First, the Function() constructor allows JavaScript code to be dynamically created and
ompiled at runtime. Function literals, however, are a static part of program structure,
st as function statements are.

econd, as a corollary of the first difference, the Function() constructor parses the
nction body and creates a new function object each time it is called. If the call to the

onstructor appears within a loop or within a frequently called function, this process can
e inefficient. On the other hand, a function literal or nested function that appears within
 loop or function is not recompiled each time it is encountered. Nor is a different
unction object created each time a function literal is encountered. (Although, as noted

earlier, a new closure may be required to capture differences in the lexical scope in which
e function is defined.)

he third difference between the Function() constructor and function literals is that
nctions created with the Function() constructor do not use lexical scoping; instead,

they are always compiled as if they were top-level functions, as the following code
emonstrates:

ar y = "global";
unction constructFunction() {
 var y = "local";
 return new Function("return y"); // Does not capture the local
scope!

on statement. As of JavaScript 1.1, functions can be defined using the Function(
ructor, and in JavaScript 1.2 and later, they can be defined with function literal
ould be aware of some important differences between these two techniques.

c
ju

S
fu
c
b
a
f

th

T
fu

d

v
f

}
/ This line displays "global", because the function returned by the
/ Function() constructor does not use the local scope. Had a
unction
/ literal been used instead, this line would have displayed "local".
lert(constructFunction()()); // Displays "global"

1.6 Netscape's JavaScript 1.2 Incompatibilities
Netscape's implementation of JavaScript 1.2 was released (as part of the Netscape 4.0
browser) while the ECMAScript v1 specification was still being finalized. The engineers
at Netscape made some guesses about what would be in the specification, and based on
those guesses, they made some changes to the way JavaScript behaved. Because these
changes were not compatible with previous versions of JavaScript, the changes were
implemented only when JavaScript 1.2 was explicitly requested. (In web browsers, this is
done by setting the language attribute of the HTML <script> tag to "JavaScript1.2".)
This was an excellent way to introduce new behavior without breaking old scripts.
Unfortunately, when work on ECMAScript v1 was completed, the new behavior that
Netscape engineers had guessed at was not part of the standard. What this means is that
Netscape's implementation of JavaScript 1.2 has special-case behavior that is not
compatible with JavaScript 1.1 and does not conform to the ECMAScript specification.

For compatibility with scripts that rely on the nonconforming behavior of JavaScript 1.2,
all future implementations of JavaScript from Netscape have retained this special
behavior when Version 1.2 is explicitly requested. Note, however, that if you request a
version greater than 1.2 (with a language attribute of "JavaScript1.3", for example) you
will get ECMAScript-compliant behavior. Because this special behavior is present only
in JavaScript implementations from Netscape, you should not rely on it in your scripts,
and the best practice is to never explicitly specify Version 1.2. Nevertheless, for those
cases when you must use JavaScript 1.2, the special behaviors of that version are listed
here:

• The equality and inequality operators behave like the identity and non-identity
operators. That is, == works like === and != works like !==.

• The default Object.toString() method displays the values of all properties
defined by the object, returning a string formatted using object literal syntax.

• The Array.toString() method separates array elements with a comma and a
space, instead of just a comma, and returns the list of elements within square
brackets. In addition, string elements of the array are quoted, so that the result is a
string in legal array literal syntax.

• When a single numeric argument n is passed to the Array() constructor, it
returns an array with n as its single element, rather than an array of length n.

• When an array object is used in a numeric context, it evaluates to its length. When
used in a boolean context, it evaluates to false if its length is 0 and otherwise
evaluates to true.

• The Array.push() method returns the last value pushed rather than the new
array length.

/
/
f
/
a

1

• When the Array.splice() method splices out a single element x, it returns x
itself, rather than an array containing x as its only element. When splice() does
not remove any elements from the array, it returns nothing instead of returning an
empty array.

• When String.substring() is called with a starting position greater than its
ending position, it returns the empty string rather than correctly swapping the
arguments and returning the substring between them.

• The String.split() method displays special behavior inherited from Perl: if
the specified separator character is a single space, it discards any leading and
trailing whitespace in the string before splitting the remainder of the string.

Part II: Client-Side JavaScript

This part of the book, Chapter 12 through Chapter 22, documents JavaScript as it is
implemented in web browsers. These chapters introduce a host of new JavaScript objects
that represent the web browser and the contents of HTML documents. Many examples
show typical uses of these client-side objects. You will find it helpful to study these
examples carefully.

• Chapter 12
• Chapter 13
• Chapter 14
• Chapter 15
• Chapter 16
• Chapter 17
• Chapter 18
• Chapter 19
• Chapter 20
• Chapter 21
• Chapter 22

Chapter 12. JavaScript in Web

to
lient-side JavaScript.[1]

Browsers
The first part of this book described the core JavaScript language. Now we move on
JavaScript as used within web browsers, commonly called c Most
of the examples we've seen so far, while legal JavaScript code, had no particular context;

hat ran in no specified environment. This chapter
provides that context. It begins with a conceptual introduction to the web browser
programming environment and basic client-side JavaScript concepts. Next, it discusses

 a web

ient-side JavaScript" is left over from the days when JavaScript was used in only two places: web browsers (clients) and web
aScript is adopted as a scripting language in more and more environments, the term client-side makes less and less sense

because it doesn't specify the client side of what. Nevertheless, we'll continue to use the term in this book.

12.1 The Web Browser Environment

r
document object model that forms a part

o
• T

12.1.1 The Window as Global Execution Context

The primary task of a web browser is to display HTML documents in a window. In
client-side JavaScript, the Document object represents an HTML document, and the

e

they were JavaScript fragments t

how we actually embed JavaScript code within HTML documents so it can run in
browser. Finally, the chapter goes into detail about how JavaScript programs are executed
in a web browser.

[1] The term "cl
servers. As Jav

To understand client-side JavaScript, you must understand the conceptual framework of
the programming environment provided by a web browser. The following sections
introduce three important features of that programming environment:

• The Window object that serves as the global object and global execution context
for client-side JavaSc ipt code

• The client-side object hierarchy and the
f it
he event-driven programming model

Window object represents the window (or frame) that displays the document. While th
Document and Window objects are both important to client-side JavaScript, the Window
object is more important, for one substantial reason: the Window object is the global
object in client-side programming.

Recall from Chapter 4 that in every implementation of JavaScript there is always a global
object at the head of the scope chain; the properties of this global object are global
variables. In client-side JavaScript, the Window object is the global object. The Window
object defines a number of properties and methods that allow us to manipulate the web
browser window. It also defines properties that refer to other important objects, such as
the document property for the Document object. Finally, the Window object has two self-

referential properties, window and self. You can use either of these global variables to
refer directly to the Window object.

Since the Window object is the global object in client-side JavaScript, all global variables
are defined as properties of the window. For example, the following two lines of code
perform essentially the same function:

var answer = 42; // Declare and initialize a global variable

hat use multiple windows. Each window or frame
involved in an application has a unique Window object and defines a unique execution
context for client-side JavaScript code. In other words, a global variable declared by
JavaScript code in one frame is not a global variable within a second frame. However, the
second frame can access a global variable of the first frame; we'll see how when we
consider these issues in more detail in Chapter 13

window.answer = 42; // Create a new property of the Window object

The Window object represents a web browser window or a frame within a window. To
client-side JavaScript, top-level windows and frames are essentially equivalent. It is
common to write JavaScript applications that use multiple frames, and it is possible, if
less common, to write applications t

.

 object
contains a document property that refers to the Document object associated with the
window and a location property that refers to the Location object associated with the
window. A Window object also contains a frames[] array that refers to the Window
objects that represent the frames of the original window. Thus, document represents the
Document object of the current window, and frames[1].document refers to the
Document object of the second child frame of the current window.

An object referenced through the current window or through some other Window object
may itself refer to other objects. For example, every Document object has a forms[]
array containing Form objects that represent any HTML forms appearing in the
document. To refer to one of these forms, you might write:

To continue with the same example, each Form object has an elements[] array
s (input fields, buttons,
ode that refers to an

object at the end of a whole chain of objects, ending up with expressions as complex as
this one:

12.1.2 The Client-Side Object Hierarchy and the Document Object
Model

We've seen that the Window object is the key object in client-side JavaScript. All other
client-side objects are connected to this object. For example, every Window

window.document.forms[0]

containing objects that represent the various HTML form element
etc.) that appear within the form. In extreme cases, you can write c

parent.frames[0].document.forms[0].elements[3].options[2].text

We've seen that the Window object is the global object at the head of the scope chain and
that all r objects. This
means that there is a hierarchy of JavaScript

 client-side objects in JavaScript are accessible as properties of othe
 objects, with the Window object at its root.

Figure 12-1 shows this hierarchy. Study this figure carefully; understanding the hierarchy
and the objects it contains is crucial to successful client-side JavaScript programming.
Most of the remaining chapters of this book are devoted to fleshing out the details of the
objects shown in this figure.

Figure 12-1. The client-side object hierarchy and Level 0 DOM

Note that Figure 12-1 shows just the object properties that refer to other objects. Most of
the objects shown in the diagram have quite a few more properties than those shown.

Many of the objects pictured in Figure 12-1 descend from the Document object. This
subtree of the larger client-side object hierarchy is known as the document object model
(DOM), which is interesting because it has been the focus of a standardization effort.
Figure 12-1 illustrates the Document objects that have become de facto standards because
they are consistently implemented by all major browsers. Collectively, they are known as
the Level 0 DOM, because they form a base

 level of document functionality that
JavaScript programmers can rely on in all browsers. These basic Document objects are

the subject of Chapter 14 and Chapter 15. A more advanced document object model that
is the subject of Chapter 17has been standardized by the W3C and Chapter 18.

g Model

data, did some computation on that data, and then wrote out the results. Later, with time-
sharing and text-based terminals, limited kinds of interactivity became possible -- the

 could ask the user for input, and the user could type in data. The computer could
ata and display the results on screen.

s and pointing devices like mice, the situation is
 driven; they respond to asynchronous user input

t depends on the position of the
mouse point s just such a graphical environment. An HTML document

n embedded graphical user interface (GUI), so client-side JavaScript uses the
en programming model.

It is perfectly possible to write a static JavaScript program that does not accept user input
and does exactly the same thing every time. Sometimes this sort of program is useful.
More often, however, we want to write dynamic programs that interact with the user. To
do this, we must be able to respond to user input.

In client-side JavaScript, the web browser notifies programs of user input by generating
events. There are various types of events, such as keystroke events, mouse motion events,
and so on. When an event occurs, the web browser attempts to invoke an appropriate

eractive client-
side JavaScript programs, we must define appropriate event handlers and register them

 at appropriate times.

ed to the event-driven programming model, it can take a
little getting used to. In the old model, you wrote a single, monolithic block of code that
followed some well-defined flow of control and ran to completion from beginning to end.
Event-driven programming stands this model on its head. In event-driven programming,
you write a number of independent (but mutually interacting) event handlers. You do not

e time, your program is not running at all
tem to invoke one of its event handlers.

ows
efine both static blocks of code that run synchronously from start to finish

and event handlers that are invoked asynchronously by the system. We'll also discuss
events and event handling in much greater detail in Chapter 19

12.1.3 The Event-Driven Programmin

In the old days, computer programs often ran in batch mode -- they read in a batch of

program
then process the d

Nowadays, with graphical display
different. Programs are generally event
in the form of mouse-clicks and keystrokes in a way tha

er. A web browser i
contains a
event-driv

event handler function to respond to the event. Thus, to write dynamic, int

with the system, so that the browser can invoke them

If you are not already accustom

invoke these handlers directly, but allow the system to invoke them at the appropriate
times. Since they are triggered by the user's input, the handlers will be invoked at
unpredictable, asynchronous times. Much of th
but merely sitting waiting for the sys

The next section explains how JavaScript code is embedded within HTML files. It sh
how we can d

.

12.2 Embedding JavaScript in HTML

Client-side JavaScript code is embedded within HTML documents in a number of ways:

• Between a pair of <script> and </script> tags
• From an external file specified by the src attribute of a <script> tag
• In an event handler, specified as the value of an HTML attribute such as onclick

or
e special javascript: protocol

The following sections document each of these JavaScript embedding techniques in more
detail. Together, they explain all the ways to include JavaScript in web pages -- that is,
they explain the allowed structure of JavaScript programs on the client side.

JavaScript scripts are part of an HTML file and are coded within <script>
hese
ss.

<script> tags may appear in either the <head> or <body> of an HTML document.

A single HTML document may contain any number of nonoverlapping pairs of <script>
and </script> tags. These multiple, separate scripts are executed in the order in which

efer to x, even though it's in a different script
 page, not the script block:

<script>document.write(x);</script>

onmouseover
• As the body of a URL that uses th

12.2.1 The <script> Tag

Client-side
and </script> tags. You may place any number of JavaScript statements between t
tags; they are executed in order of appearance, as part of the document loading proce

they appear within the document. While separate scripts within a single file are executed
at different times during the loading and parsing of the HTML file, they constitute part of
the same JavaScript program: functions and variables defined in one script are available
to all scripts that follow in the same file. For example, you can have the following script
somewhere in an HTML page:

<script>var x = 1;</script>

Later on in the same HTML page, you can r
lock. The context that matters is the HTMLb

The document.write() method is an important and commonly used one. When used as
shown here, it inserts its output into the document at the location of the script. When the
script finishes executing, the HTML parser resumes parsing the document and starts by
parsing any text produced with document.write().

Example 12-1 shows a sample HTML file that includes a simple JavaScript program.
Note the difference between this example and many of the code fragments shown earlier
in this book: this one is integrated with an HTML file and has a clear context in which it
runs. Note also the use of a language attribute in the <script> tag. This is explained in
the next section.

Example 12-1. A simple JavaScript program in an HTML file
<html>
<head>
<title>Today's Date</title>
 <script language="JavaScript">

are:

nguage="JavaScript">
all the function we defined above

12.2.1.1 The language and type attributes

only used client-side scripting language, it is
ser what language a script is written in, the

script> tag has an optional language attribute. Browsers that understand the specified
scripting language run the script; browsers that do not know the language ignore it.

If you are writing JavaScript code, use the language attribute as follows:

<script language="JavaScript">
 // JavaScript code goes here
</script>

 // Define a function for later use
 function print_todays_date() {
 var d = new Date(); // Get today's date and
time
 document.write(d.toLocaleString()); // Insert it into the
document
 }
 </script>
</head>
<body>
The date and time
<script la
 // Now c
 print_todays_date();
</script>
</body>
</html>

Although JavaScript is by far the most comm
not the only one. In order to tell a web brow
<

If, for example, you are writing a script in Microsoft's Visual Basic Scripting Edition
language,[2] you would use the attribute like this:

[2] Also known as VBScript. The only browser that supports VBScript is Internet Explorer, so scripts written in this language are not portable.
VBScript interfaces with HTML objects in the same way that JavaScript does, but the core language itself has a different syntax than
JavaScript. VBScript is not documented in this book.

<script language="VBScr
 ' VBScript code goes here (' is a comment character like // in

ipt">

JavaScript)
</script>

JavaScript is the default scripting language for the Web, and if you omit the language
attribute, both Netscape and Internet Explorer will assume that your scripts are written in

The HTML 4 specification standardizes the <script> tag, but it deprecates the language
 languages. Instead, the

specification prefers the use of a type attribute that specifies the scripting language as a
MIME type. Thus, in theory, the preferred way to embed a JavaScript script is with a tag
that looks like this:

<script type="text/javascript">

In practice, the language attribute is still better supported than this new type attribute.

The HTML 4 specification also defines a standard (and useful) way to specify the default
scripting language for an entire HTML file. If you plan to use JavaScript as the only
scripting language in a file, simply include the following line in the <head> of the
document:

<meta http-equiv="Content-Script-Type" content="text/javascript">

If y d
type at

Since JavaScript is the default scripting language, those of us who program with it never
really need to use the language attribute to specify the language in which a script is
written. However, there is an important secondary purpose for this attribute: it can also be
used to specify what version of JavaScript is required to interpret a script. When you
specify the language="JavaScript" attribute for a script, any JavaScript-enabled
browser will run the script. Suppose, however, that you have written a script that uses the
exception-handling features of JavaScript 1.5. To avoid syntax errors in browsers that do
not support this version of the language, you could embed your script with this tag:

<script language="JavaScript1.5">

changes only when "JavaScript1.2" was explicitly specified in the language attribute.

JavaScript.

attribute because there is no standard set of names for scripting

ou o this, you can safely use JavaScript scripts without specifying the language or
 tributes.

If you do this, only browsers that support JavaScript 1.5 (and its exception-handling
features) will run the script; any others will ignore it.

The use of the string "JavaScript1.2" in the language attribute deserves special mention.
When Netscape 4 was being prepared for release, it appeared that the emerging ECMA-
262 standard would require some incompatible changes to certain features of the
language. To prevent these incompatible changes from breaking existing scripts, the
designers of JavaScript at Netscape took the sensible precaution of implementing the

Unfortunately, the ECMA standard was not finalized before Netscape 4 was released, and
after the release, the proposed incompatible changes to the language were removed from
the standard. Thus, specifying makes Netscape 4 behave in

A specification.
language="JavaScript1.2"

ways that are not compatible with previous browsers or with the ECM
(See Section 11.6, for complete details on these incompatibilities.) For this reason, you
m y want to avoid specifying "JavaScript1.2" as a value for the language attribute.

12.2.1.2 The </script> tag

You may at some point find yourself writing a script that uses the document.write()
method to output a script into some other browser window or frame. If you do this, you'll
need to write out a </script> tag to terminate the script you are writing. You must be
careful, though -- the HTML parser makes no attempt to understand your JavaScript
code, and if it sees the string "</script>" in your code, even if it appears within quotes, it
assumes that it has found the closing tag of the currently running script. To avoid this
problem, simply break up the tag into pieces and write it out using an expression like
"</" + "script>":

<script>
f1.document.write("<script>");
f1.document.write("document.write('<h2>This is the quoted
script</h2>')");

Alternatively, you can escape the / in </script> with a backslash:

f1.document.write("<\/script>");

12.2.1

The HT
use but
document.write() d content to a document. Because of this,
when the HTML parser encounters a script, it must stop parsing the document and wait
for the script to execute.

If you w
that de
attribut
parsing cript
that can owsers that
take advantage of the defer attribute. Note that defer does not have a value; it simply
must be present in the tag:

<script defer>

a

f1.document.write("</" + "script>");
</script>

.3 The defer attribute

ML 4 standard defines an attribute of the <script> tag that is not yet in common
 is nonetheless important. As I mentioned briefly earlier, a script may call the

 method to dynamically ad

rite a script that does not produce any document output -- for example, a script
fines a function but never calls document.write() -- you may use the defer
e in the <script> tag as a hint to the browser that it is safe for it to continue
 the HTML document and defer execution of the script until it encounters a s
not be deferred. Doing this may result in improved performance in br

 //
</scri

12.2.2

As of JavaScript 1.1, the <script> tag supports a src attribute. The value of this
attribute specifies the URL of a file containing JavaScript code. It is used like this:

<scrip

A JavaScript file typically has a .js extension and contains pure JavaScript, without
<script> tags or any other HTML.

A <script> tag with the src attribute specified behaves exactly as if the contents of the
specified JavaScript file appeared directly between the <script> and </script> tags.
Any code that does appear between these tags is ignored by browsers that support the src
attribute (although it is still executed by browsers such as Netscape 2 that do not
recognize the attribute). Note that the closing </script> tag is required even when the

• It simplifies your HTML files by allowing you to remove large blocks of
JavaScript code from them.

 of caching more than outweigh the small delay required for the browser to
e

• Because the src attribute takes an arbitrary URL as its value, a JavaScript

JavaScript code in a script is executed once, when the HTML file that contains it is read
into the web browser. A program that uses only this sort of static script cannot
dynamically respond to the user. More dynamic programs define event handlers that are

when certain events occur -- for example,

 Any JavaScript code that does not call document.write()
pt>

 Including JavaScript Files

t src="../../javascript/util.js"></script>

src attribute is specified and there is no JavaScript between the <script> and
</script> tags.

There are a number of advantages to using the src tag:

• When you have a function or other JavaScript code used by several different
HTML files, you can keep it in a single file and read it into each HTML file that
needs it. This reduces disk usage and makes code maintenance much easier.

• When JavaScript functions are used by more than one page, placing them in a
separate JavaScript file allows them to be cached by the browser, making them
load more quickly. When JavaScript code is shared by multiple pages, the time
savings
open a separate network connection to download the JavaScript file the first tim
it is requested.

program or web page from one web server can employ code (such as subroutine
libraries) exported by other web servers.

12.2.3 Event Handlers

automatically invoked by the web browser

when the user clicks on a button within a form. Because events in client-side JavaScript
originate from HTML objects (such as buttons), event handlers are defined as attributes
of those objects. For example, to define an event handler that is invoked when the user
clicks on a checkbox in a form, you specify the handler code as an attribute of the HTML
tag that defines the checkbox:

<input type="checkbox" name="opts" value="ignore-case"
 onclick="ignore-case = this.checked;"
>

What's of interest to us here is the onclick attribute.[3] The string value of the onclick
attribute may contain one or more JavaScript statements. If there is more than one

with semicolons. When the
s ox, the JavaScript code
within the string is executed.

[3] All HTML event handler attribute names begin with "on".

While you can include any number of JavaScript statements within an event handler
definition, a common technique when more than one or two simple statements are

e body of an event handler as a function between <script> and
</script> tags. Then you can simply invoke this function from the event handler. This
keeps most of your actual JavaScript code within scripts and reduces the need to mingle
JavaScript and HTML.

We'll cover events and event handlers in much more detail in Chapter 19

statement, the statements must be separated from each other
pecified event -- in this case, a click -- occurs on the checkb

required is to define th

, but you'll see
them used in a variety of examples before then. Chapter 19 includes a comprehensive list
of event handlers, but these are the most common:

onclick

This handler is supported by all button-like form elements, as well as <a> and
<area> tags. It is triggered when the user clicks on the element. If an onclick
handler returns false, the browser does not perform any default action associated
with the button or link; for example, it doesn't follow a hyperlink (for an <a> tag)
or submit a form (for a Submit button).

se button. Document elements that

support onclick also support these handlers. In IE 4 and Netscape 6, these
handlers are actually supported by just about all document elements.

onmousedown , onmouseup

These two event handlers are a lot like onclick, but they are triggered separately
when the user presses and releases a mou

onmouseover , onmouseout

out

onchange

This event handler is supported by the <input> , <select>, and <textarea>
elements. It is triggered when the user changes the value displayed by the element

 ,

<form> iggered when the

 look at the interactive
loan-payment script in Example 1-3

These two event handlers are triggered when the mouse pointer moves over or
of a document element, respectively. They are used most frequently with <a>
tags. If the onmouseover handler of an <a> tag returns true, it prevents the
browser from displaying the URL of the link in the status line.

and then tabs or otherwise moves focus out of the element.

onsubmit onreset

These event handlers are supported by the tag and are tr
form is about to be submitted or reset. They can return false to cancel the
submission or reset. The onsubmit handler is commonly used to perform client-
side form validation.

For a realistic example of the use of event handlers, take another
. The HTML form in this example contains a number

of event handler attributes. The body of these handlers is simple: they simply call the
calculate() function defined elsewhere within a <script>.

12.2.4 JavaScript in URLs

Another way that JavaScript code can be included on the client side is in a URL
following the javascript: pseudoprotocol specifier. This special protocol type specifies
that the body of the URL is arbitrary JavaScript code to be run by the JavaScript
interpreter. If the JavaScript code in a javascript: URL contains multiple statements,
the statements must be separated from one another by semicolons. Such a URL might
look like this:

javascript:var now = new Date(); "<h1>The time is:</h1>" + now;

When the browser loads one of these JavaScript URLs, it executes the JavaScript code
contained in the URL and uses the string value of the last JavaScript statement as the
contents of the new document to display. This string value may contain HTML tags and
is formatted and displayed just like any other document loaded into the browser.

JavaScript URLs may also contain JavaScript statements that perform actions but return
no value. For example:

javascript:alert("Hello World!")

When this sort of URL is loaded, the browser executes the JavaScript code, but because
there is no value to display as the new document, it does not modify the currently
displayed document.

Often, we want to use a javascript: URL to execute some JavaScript code without
altering the currently displayed document. To do this, you must be sure that the last
statement in the URL has no return value. One way to ensure this is to use the void
operator to explicitly specify an undefined return value. Simply use the statement void
0; at the end of your javascript: URL. For example, here is a URL that opens a new,
blank browser window without altering the contents of the current window:

e

e href value of a hyperlink. When the user

 can be used with objects that
do not support event handlers. For example, the <area> tag does not support an onclick
event handler on Windows platforms in Netscape 3 (though it does in Netscape 4). So, if

javascript:window.open("about:blank"); void 0;

Without the void operator in this URL, the return value of the Window.open() method
call would be converted to a string and displayed, and the current document would be
overwritten by a document that appears something like this:

[object Window]

You can use a javascript: URL anywhere you'd use a regular URL. One important
way to use this syntax is to type it directly into the Location field of your browser, wher
you can test arbitrary JavaScript code without having to open your editor and create an
HTML file containing the code.

javascript: URLs can be used in bookmarks, where they form useful mini-JavaScript
programs, or "bookmarklets," that can be easily launched from a menu or toolbar of
bookmarks.

javascript: URLs can also be used as th
clicks on such a link, the specified JavaScript code is executed. Or, if you specify a
javascript: URL as the value of the action attribute of a <form> tag, the JavaScript
code in the URL is executed when the user submits the form. In these contexts, the
javascript: URL is essentially a substitute for an event handler.

There are a few circumstances where a javascript: URL

you want to execute JavaScript code when the user clicks on a client-side image map in
Netscape 3, you must use a javascript: URL.

wsers,
and you may occasionally see JavaScript code in a context other than those described
here. For example, Internet Explorer allows you to define event handlers in a <script>
tag that uses special for and event attributes. Netscape 4 allows you to use JavaScript as
an alternative syntax for defining CSS style sheets within a <style> tag. Netscape 4 also
extends the HTML entity syntax and allows JavaScript to appear within entities (but only
within the values of HTML attributes). This can result in HTML that looks like this:

<table border="&{getBorderWidth()};">

Script Programs
The previous section discussed the mechanics of integrating JavaScript code into an
HTML file. Now we move on to discuss exactly how that integrated JavaScript code is
executed by the JavaScript interpreter. The following sections explain how different
forms of JavaScript code are executed. While some of this material is fairly obvious,
there are a number of important details that are not so obvious.

12.3.1 Scripts

JavaScript statements that appear between <script> and </script> tags are executed in
order of appearance; when more than one script appears in a file, the scripts are executed
in the order in which they appear. If a script calls document.write(), any text passed
to that method is inserted into the document immediately after the closing </script> tag
and is parsed by the HTML parser when the script finishes running. The same rules apply
to scripts included from separate files with the src attribute.

The detail that is not so obvious, but is nevertheless important to remember, is that
execution of scripts occurs as part of the web browser's HTML parsing process. Thus, if a
script appears in the <head> section of an HTML document, none of the <body> section
of the document has been defined yet. This means that the JavaScript objects that
represent the contents of the document body, such as Form and Link, have not been
created yet and cannot be manipulated by that code.

12.2.5 JavaScript in Nonstandard Contexts

Both Netscape and Microsoft have implemented proprietary extensions in their bro

Finally, Netscape 4 also supports a form of conditional comment based on this JavaScript
entity syntax. Note that Netscape 6 and the Mozilla browser on which it is based no
longer support these nonstandard uses of JavaScript.

12.3 Execution of Java

Your scripts should not attempt to manipulate objects that have not yet been created. For
example, you can't write a script that manipulates the contents of an HTML form if the
script appears before the form in the HTML file. Some other, similar rules apply on a
case-by-case basis. For example, there are properties of the Document object that may be
set only from a script in the

r

erty in the client-
side reference.

ocument that contains them is being parsed
ic

ser

computation and invoke that function from an event handler when the user requests it,

rlier, scripts that use the src attribute to read in external JavaScript files are
ode directly in the file. What this means is

p and wait for the
d. (Unlike embedded images, scripts cannot be

downloaded in the background while the HTML parser continues to run.) Downloading
an external file of JavaScript code, even over a relatively fast modem connection, can
cause noticeable delays in the loading and execution of a web page. Of course, once the
JavaScript code is cached locally, this problem effectively disappears.

 the

owever, write a script that
f the relative locations of the script
aScript programs start off with a

ing more than define functions that

 is also common to write JavaScript programs that use scripts simply to define functions
As we'll see in the next section, you must

take care in this case to ensure two things: that all functions are defined before any event
handler attempts to invoke them, and that event handlers and the functions they invoke do
not attempt to use objects that have not yet been defined.

<head> section of an HTML document, before the browse
has begun to parse the document content in the <body> section. Any special rules of this
sort are documented in the reference page for the affected object or prop

Since scripts are executed while the HTML d
and displayed, they should not take too long to run. Because scripts can create dynam
document content with document.write(), the HTML parser must stop parsing the
document whenever the JavaScript interpreter is running a script. An HTML document
cannot be fully displayed until all the scripts it contains have finished executing. If a
script performs some computationally intensive task that takes a long time to run, the u
may become frustrated waiting for the document to be displayed. Thus, if you need to
perform a lot of computation with JavaScript, you should define a function to do the

rather than doing the computation when the document is first loaded.

As I noted ea
executed just like scripts that include their c
that the HTML parser and the JavaScript interpreter must both sto
external JavaScript file to be downloade

12.3.2 Functions

Remember that defining a function is not the same as executing it. It is perfectly safe to
define a function that manipulates objects that have not yet been created. Just take care
that the function is not executed or invoked until the necessary variables, objects, and so
on all exist. I said earlier that you can't write a script to manipulate an HTML form if
script appears before the form in the HTML file. You can, h
defines a function to manipulate the form, regardless o

n fact, this is a common practice. Many Javand form. I
script in the <head> of the document that does noth
are used in the <body> of the HTML file.

It
that are later invoked through event handlers.

12.3.3 Event Handlers

Defining an event handler as the value of an onclick or another HTML attribute is much
like defining a JavaScript function: the code is not immediately executed. Event-handler
execution is asynchronous. Since events generally occur when the user interacts with
HTML objects, there is no way to predict when an event handler will be invoked.

Event handlers share an important restriction with scripts: they should not take a long
time to execute. As we've seen, scripts should run quickly because the HTML parser
cannot continue parsing until the script finishes executing. Event handlers, on the other

il

hand, should not take long to run because the user cannot interact with your program unt
the program has finished handling the event. If an event handler performs some time-
consuming operation, it may appear to the user that the program has hung, frozen, or
crashed.

If for some reason you must perform a long operation in an event handler, be sure that the
user has explicitly requested that operation, and then notify him that there will be a wait.
As we'll see in Chapter 13, you can notify the user by posting an alert() dialog box or
displaying text in the browser's status line. Also, if your program requires a lot of
background processing, you can schedule a function to be called repeatedly during idle
time with the setTimeout() method.

ns. First, if your event handler invokes a function, you must be sure
that the function is already defined before the handler calls it. One way to guarantee this

n of an HTML document. This section
ny functions in it defined) before the

been parsed and created. An event handler

It is important to understand that event handlers may be invoked before a web page is
fully loaded and parsed. This is easier to understand if you imagine a slow network
connection -- even a half-loaded document may display hypertext links and form
elements that the user can interact with, thereby causing event handlers to be invoked
before the second half of the document is loaded.

The fact that event handlers can be invoked before a document is fully loaded has two
important implicatio

is to define all your functions in the <head> sectio
of a document is always completely parsed (and a
<body> section of the document is parsed. Since all objects that define event handlers
must themselves be defined in the <body> section, functions in the <head> section are
guaranteed to be defined before any event handlers are invoked.

The second implication is that you must be sure that your event handler does not attempt
to manipulate HTML objects that have not yet
can always safely manipulate its own object, of course, and also any objects that are
defined before it in the HTML file. One strategy is simply to define your web page's user
interface in such a way that event handlers refer only to previously defined objects. For
example, if you define a form that uses event handlers only on the Submit and Reset
buttons, you just need to place these buttons at the bottom of the form (which is where
good user-interface style says they should go anyway).

In more complex programs, you may not be able to ensure that event handlers manipulate
only objects defined before them, so you need to take extra care with these programs. If
an event handler manipulates only objects defined within the same form, it is pretty
unlikely that you'll ever have problems. When you manipulate objects in other forms or
other frames, however, this starts to be a real concern. One technique is to test for the
existence of the object you want to manipulate before you manipulate it. You can do this
simply by comparing it (and any parent objects) to null. For example:

<script>
function set_name_other_frame(name)
{
 if (parent.frames[1] == null) return; // Other frame not yet
defined
 if (!parent.frames[1].document) return; // Document not yet loaded

ot

>

In JavaScript 1.5 and later, you can omit the existence tests in the previous code if you
instead use the try/catch statement to catch the exception that will be thrown if the
function is invoked before the document is fully loaded.

nother technique that an event handler can use to ensure that all required objects are
efined involves the onload event handler. This event handler is defined in the <body> or
frameset> tag of an HTML file and is invoked when the document or frameset is fully

 you set a flag within the onload event handler, other event handlers can test
is flag to see if they can safely run, with the knowledge that the document is fully
aded and all objects it contains are defined. For example:

body onload="window.fullyLoaded = true;">
 <form>
 <input type="button" value="Do It!"
 onclick="if (window.fullyLoaded) doit();">
 </form>
/body>

2.3.3.1 onload and onunload event handlers

in it
 if (!parent.frames[1].document.myform) return; // Form n
yet defined
 if (!parent.frames[1].document.myform.name) return; // Field not
yet defined

 parent.frames[1].document.myform.name.value = name;
}
</script>

<input type="text" name="lastname"
 onchange="set_name_other_frame(this.value)";

A
d
<
loaded. If
th
lo

<

<

1

The onload event handler and its partner onunload are worth a special mention in the
context of the execution order of JavaScript programs. Both of these event handlers are
defined in the <body> or <frameset> tag of an HTML file. (No HTML file can legally

n you are working with multiple frames, there is no guarantee of the
order in which the onload event handler is invoked for the various frames, except that the
handler for the parent frame is invoked after the handlers of all its child frames.

The onunload handler is executed just before the page is unloaded, which occurs when
the browser is about to move on to a new page. You can use it to undo the effects of your
onload handler or other scripts in your web page. For example, if your web page opens
up a secondary browser window, the onunload handler provides an opportunity to close
that window when the user moves on to some other web page. The onunload handler
should not run any kind of time-consuming operation, nor should it pop up a dialog box.
It exists simply to perform a quick cleanup
im

til the browser tries to load the document to

which the URL refers. This may be when a user types in a JavaScript URL or, more
ubmits a form.

javascript: URLs are often used as an alternative to event handlers, and as with event
handlers, the code in those URLs can be executed before a document is fully loaded.
Thus, you must take the same precautions with javascript: URLs that you take with
event handlers to ensure that they do not attempt to reference objects (or functions) that
are not yet defined.

12.3.5 Window and Variable Lifetime

nt-side JavaScript programs run is the issue
of varia lobal object for client-side
JavaScript and that all global variables are properties of the Window object. What
happens to Window objects and the variables they contain when the web browser moves
from one web page to another?

Whene t for
that wi
by a script in the previous document are deleted, and any of the standard system
properties that may have been altered or overwritten are restored. Every document begins

 slate." Your scripts can rely on this -- they will not inherit a corrupted
 the previous document. Any variables and functions your scripts

define persist only until the document is replaced with a new one.

contain both of these tags.) The onload handler is executed when the document or
frameset is fully loaded, which means that all images have been downloaded and
displayed, all subframes have loaded, any Java applets have started running, and so on.
Be aware that whe

operation; running it should not slow down or
pede the user's transition to a new page.

12.3.4 JavaScript URLs

JavaScript code in a javascript: URL is not executed when the document containing
the URL is loaded. It is not interpreted un

likely, when a user follows a link, clicks on a client-side image map, or s

A final topic in our investigation of how clie
ble lifetime. We've seen that the Window object is the g

ver a new document is loaded into a window or a frame, the Window objec
ndow or frame is restored to its default state: any properties and functions defined

with a "clean
environment from

The clean slate we're discussing here is the Window object that represents the window or
hich the document is loaded. As we've discussed, this Window object is the

ode in that window or frame. However, if you're working
with m
Window objects that represent other windows or frames. So in addition to considering the
persistence of variables and functions defined in Window objects, we must also consider
the persistence of the Window object itself.

l browser window exists as long as that
window any
web pa -
level window is open.[4]

frame into w
global object for JavaScript c

ultiple frames or multiple windows, a script in one window may refer to the

A Window object that represents a top-leve
 exists. A reference to the Window object remains valid regardless of how m

ges the window loads and unloads. The Window object is valid as long as the top

[4] A Window object may not actually be destroyed when its window is closed. If there are still references to the Window object from other
windows, the object is not garbage collected. However, a reference to a window that has been closed is of very little practical use.

A Window object that represents a frame remains valid as long as that frame remains
within hat
has a re object for frame B, and a new document is loaded into
frame B, frame A's reference to the Window object remains valid. Any variables or
functions defined in frame B's Window object will be deleted when the new document is
loaded, but the Window object itself remains valid (until the containing frame or window
loads a new document and overwrites both frame A and frame B).

This m , whether they represent top-level windows or frames,
are quite persistent. The lifetime of a Window object may be longer than that of the web

 the lifetime of the scripts contained in the
 it displays.

the frame or window that contains it. For example, if frame A contains a script t
ference to the Window

eans that Window objects

pages it contains and displays and longer than
web pages

Chapter 13. Windows and Frames
Chapter 12 described the Window object and the central role it plays in client-side
JavaScript. We've seen that the Window object serves as the global object for client-side
JavaScript programs, and, as illustrated in Figure 12-1, it is also the root of the client-side
object hierarchy.

Besides
Every web browser window and every frame within every window is represented by a
Window object. The Window object defines quite a few properties and methods that are
important in client-side JavaScript programming. This chapter explores those properties
and methods and demonstrates some important techniques for programming with
windows and frames. Note that because the Window object is so central to client-side
program is quite long. Don't feel you have to master all this material at
once -- you may find it easier to study this chapter in several shorter chunks!

verview
We beg
and me
more detail. As usual, the client-side reference section contains complete coverage of
Window object properties and methods.

The most important properties of the Window object are the following:

A boolean value that is only if the window has been closed.

defaultStatus, status

ext that appears in the status line of the browser.

docum

that represents the HTML document
e Document object is covered in detail in Chapter 14

 these special roles, the Window object is an important object in its own right.

ming, this chapter

13.1 Window O
in this chapter with an overview of some of the most commonly used properties
thods of the Window object. Later sections of the chapter explain this material in

closed

true

The t

ent

A reference to the Document object
displayed in the window. Th .

frames[]

 that represent the frames (if any) within the window.

An array of Window objects

history

resents the user's browsing history for

location

 represents the URL of the document
t property causes the browser to load a new

name

The name of the window. Can be used with the target attribute of the HTML
<a> tag, for example.

parent

If the current window is a frame, a reference to the frame of the window that
contains it.

self

A self-referential property; a reference to the current Window object. A synonym
for window.

top

If the current window is a frame, a reference to the Window object of the top-
level window that contains the frame. Note that top is different from parent for
frames nested within other frames.

window

A reference to the History object that rep
the window.

A reference to the Location object that
displayed in he window. Setting this
document.

opener

A reference to the Window object that opened this one, or null if this window
was opened by the user.

A self-referential property; a reference to the current Window object. A synonym
for self.

The Window object also supports a number of important methods:

alert() , confirm(), prompt()

Display simple dialog boxes to the user and, for confirm() and prompt(), get
the user's response.

close()

Close the window.

focus() , blur()

Request or relinquish keyboard focus for the window. The focus() method also
ensures that the window is visible by bringing it to the front of the stacking order.

moveBy() , moveTo()

Move the window.

open()

Open a new top-level window to display a specified URL with a specified set of
features.

print()

Print the window or frame -- same as if the user had selected the Print button
from the window's toolbar (Netscape 4 and later and IE 5 and later only).

resizeBy() , resizeTo()

Resize the window.

scrollBy() , scrollTo()

Scroll the document displayed within the window.

y
between invocations.

ut()

milliseconds.

.2 Simple Dialog Boxes
Three commonly used Window methods are alert() , confirm(), and prompt().

ed

setInterval() , clearInterval()

Schedule or cancel a function to be repeatedly invoked with a specified dela

setTimeout() , clearTimeo

Schedule or cancel a function to be invoked once after a specified number of

As you can see from these lists, the Window object provides quite a bit of functionality.
The remainder of this chapter explores much of that functionality in more detail.

13

These methods pop up simple dialog boxes. alert() displays a message to the user,
confirm() asks the user to click an Ok or Cancel button to confirm or cancel an

boxes producoperation, and prompt() asks the user to enter a string. Sample dialog
by these three methods are shown in Figure 13-1.

Figure 13-1. alert(), confirm(), and prompt() dialog boxes

Note that the text displayed by these dialog boxes is plain text, not HTM
format these dialog boxes only with spaces, newlines, and vari

L-formatted text.
You can ous punctuation
characters. Adjusting the layout generally requires trial and error. Bear in mind, though,
that the dialog boxes look different on different platforms and in different browsers, so
you can't always count on your formatting to look right on all possible browsers.

Some browsers (such as Netscape 3 and 4) display the word "JavaScript" in the titlebar or
upper-left corner of all dialog boxes produced by alert(), confirm(), and prompt(
). Although designers find this annoying, it should be considered a feature instead of a
bug: it is there to make the origin of the dialog box clear to users and to prevent you from
writing Trojan-horse code that spoofs system dialog boxes and tricks users into entering
their passwords or doing other things that they shouldn't do.

The confirm() and prompt() methods block -- that is, those methods do not return
until the user dismisses the dialog boxes they display. This means that when you pop up
one of these boxes, your code stops running and the currently loading document, if any,
stops loading until the user responds with the requested input. There is no alternative to
blocking for these methods -- their return value is the user's input, so they must wait for
the user before they can return. In most browsers, the alert() method also blocks and
waits for the user to dismiss the dialog box. In some browsers, however (notably
Netscape 3 and 4 on Unix platforms), alert() does not block. In practice, this minor
incompatibility rarely causes problems.

Example 13-1 shows some typical uses of these methods.

Example 13-1. Using the alert(), confirm(), and prompt() methods

n will take some time and that the user should
// be patient. It would be suitable for use in the onsubmit event

s.
arn_on_submit()

{
 alert("\n___ _\n\n"
+
 " Your query is being submitted...\n" +
 "___ _\n\n"
+
 "Please be aware that complex queries such as yours\n" +
 " can require a minute or more of search time.\n\n" +
 " Please be patient.");
}

// Here is a use of the confirm() method to ask if the user really
// wants to visit a web page that takes a long time to download. Note
that
// the return value of the method indicates the user response. Based
// on this response, we reroute the browser to an appropriate page.
var msg = "\nYou are about to experience the most\n\n" +
 " -=| AWESOME |=-\n\n" +
 "web page you have ever visited!!!!!!\n\n" +
 "This page takes an average of 15 minutes to\n" +
 "download over a 56K modem connection.\n\n" +
 "Are you ready for a *good* time, Dude????";

if (confirm(msg))
 location.replace("awesome_page.html");
else
 location.replace("lame_page.html");

rs typically display a status line at the bottom of every window (except for
 messages to the user.

n the user moves the mouse over a
imple context help message that

// Here's a function that uses the alert() method to tell the user
// that form submissio

handler
// of an HTML form.
// Note that all formatting is done with spaces, newlines, and
underscore
function w

// Here's some very simple code that uses the prompt() method to get
// a user's name and then uses that name in dynamically generated HTML.
n = prompt("What is your name?", "");
document.write("<hr><h1>Welcome to my home page, " + n + "</h1><hr>");

13.3 The Status Line
Web browse
those explicitly created without one), where the browser can display
When the user moves the mouse over a hypertext link, for example, the browser usually
displays the URL to which the link points. And whe

wser control button, the browser may display a sbro

explains the purpose of the button. You can also make use of this status line in your own

eb browsers usually display the URL of a hypertext link when the user passes
ehave

ed
f

ote that the event handler *must* return true for this to work. -

<map name="map1">

n Center'; return true;">
oords="0,20,50,40" href="order.html"

 <area coords="0,40,50,60" href="help.html"
 onmouseover="status='Get help fast!'; return true;">

r

true
handler displays in the status line with its own URL.

Don't worry if you do not fully understand the event handler in this example. We'll
explain events in Chapter 19

programs. Its contents are controlled by two properties of the Window object: status
and defaultStatus.

Although w
the mouse pointer over the link, you may have encountered some links that don't b
this way -- links that display some text other than the link's URL. This effect is achiev
with the status property of the Window object and the onmouseover event handler o
hypertext links:

<!-- Here's how you set the status line in a hyperlink.
-- N

->
Lost? Dazed and confused? Visit the
<a href="sitemap.html" onmouseover="status='Go to Site Map'; return
ue;"> tr

 Site Map

<!-- You can do the same thing for client-side image maps -->

 <area coords="0,0,50,20" href="info.html"
useover="status='Visit our Informatio onmo

 <area c
 onmouseover="status='Place an order'; return true;">

</map>

The onmouseover event handler in this example must return true. This tells the browse
that it should not perform its own default action for the event -- that is, it should not
display the URL of the link in the status line. If you forget to return , the browser
overwrites whatever message the

.

L

w status property --
your custom message is displayed while the mouse is over the hyperlink and is erased
when the mouse moves off the link.

The status property is intended for exactly the sort of transient message we saw in the
previous example. Sometimes, though, you want to display a message that is not so
transient in the status line -- for example, you might display a welcome message to users
visiting your web page or a simple line of help text for novice visitors. To do this, you set
the defaultStatus property of the Window object; this property specifies the default
text displayed in the status line. That text is temporarily replaced with URLs, context help

When the user moves the mouse pointer over a hyperlink, the browser displays the UR
for the link, then erases the URL when the mouse moves off the hyperlink. The same is
true when you use an onmouseover event handler to set the Windo

messages, or other transient text when the mouse pointer is over hyperlinks or br
control buttons, but once the mouse moves off those areas, the default text is restored.

You might use the defaultStatus property like this to provide a friendly and helpful
message to real beginners:

<script>

owser

defaultStatus = "Welcome! Click on underlined blue text to navigate.";

13.4 Timeouts and Intervals
The setTimeout() method of the Window object schedules a piece of JavaScript code
to be run at some specified time in the future. The clearTimeout() method can be used
to cancel the execution of that code. setTimeout() is commonly used to perform
animations or other kinds of repetitive actions. If a function runs and then uses

The setTimeout() method is commonly used in conjunction with the status or
defaultStatus properties to animate some kind of message in the status bar of the
browser. In general, animations involving the status bar are gaudy, and you should shun

n

</script>

setTimeout() to schedule itself to be called again, we get a process that repeats
without any user intervention. JavaScript 1.2 has added the setInterval() and
clearInterval() methods, which are like setTimeout() and clearTimeout(),
except that they automatically reschedule the code to run repeatedly; there is no need for
the code to reschedule itself.

them! There are, however, a few status-bar animation techniques that can be useful and i
good taste. Example 13-2 shows such a tasteful status-bar animation. It displays the
current time in the status bar and updates that time once a minute. Because the update
occurs only once a minute, this animation does not produce a constant flickering
distraction at the bottom of the browser window, like so many others do.

Note the use of the onload event handler of the <body> tag to perform the first call to the
display_time_in_status_line() method. This event handler is invoked once when
the HTML document is fully loaded into the browser. After this first call, the method
uses to schedule itself to be called every 60 seconds so that it can update

d time.

Examp us line
<html>
<head>

ion displays the time in the status line
// Invoke it once to activate the clock; it will call itself from then
on
functi
{

setTimeout()
the displaye

le 13-2. A digital clock in the stat

<script>
// This funct

on display_time_in_status_line()

 va
 var h = d.getHours(); // Extract hours: 0 to 23
 var m = d.getMinutes(); // Extract minutes: 0 to 59
 va
 if (h > 12) h -= 12; // Convert 24-hour format to
12-hour
 if (h == 0) h = 12; // Convert 0 o'clock to
midnight
 if
minute
 va

 defaultStatus = t; // Display it in the status

 // Arrange to do it all again in one minute
 setTimeout("display_time_in_status_line()", 60000); // 60000 ms
is one
}
</script>

bother starting the clock till everything is loaded. The

anyway
<body
<!-- The HTML document contents go here -->
</body>

In JavaScript 1.2, Example 13-2

r d = new Date(); // Get the current time

r ampm = (h >= 12)?"PM":"AM"; // Is it a.m. or p.m.?

 (m < 10) m = "0" + m; // Convert 0 minutes to 00
s, etc.
r t = h + ':' + m + ' ' + ampm; // Put it all together

line

 minute

</head>
<!-- Don't
 -- status line will be busy with other messages during loading,

. -->
onload="display_time_in_status_line();">

</html>

 could be written using setInterval() instead of
 the

 event
handler. Instead, after defining display_time_in_status_line(), our script would
call setInterval() to schedule an invocation of the function that automatically repeats
once every 60,000 milliseconds.

13.5 Error Handling
The onerror property of a Window object is special. If you assign a function to this
property, the function will be invoked whenever a JavaScript error occurs in that window:
the function you assign becomes an error handler for the window.

Three arguments are passed to an error handler. The first is a message describing the
error that occurred. This may be something like "missing operator in expression", "self is
read-only", or "myname is not defined". The second argument is a string that contains the
URL of the document containing the JavaScript code that caused the error. The third
argument is the line number within the document where the error occurred. An error
handler can use these arguments for any purpose it desires. A typical error handler might
display the error message to the user, log it somewhere, or force the error to be ignored.

setTimeout() setTimeout() call would be removed from
splay_time_in_status_line() method, and we'd remove the onload

. In this case, the
di

In addition to those three arguments, the return value of the onerror handler is
significant. Browsers typically display an error message in a dialog box or in the status
line when an error occurs. If the onerror handler returns true, it tells the system that the
h necessary -- in other words, the
system should not display its own error message. For example, if you do not want your
users to be pestered by error messages, no matter how buggy the code you write is, you

ke this at the start of all your JavaScript programs:

very difficult for users to give you feedback when your
ing error messages.

onerror handler in Example 14-1

andler has handled the error and that no further action is

could use a line of code li

self.onerror = function() { return true; }

Of course, doing this will make it
programs fail silently without produc

We'll see a sample use of an . That example uses the
 handler to display the error details to the use w the user to submit a bug

Note that the onerror error handler

port JavaScript 1.5 have
an alternative means of catching and handling errors, however: they can use the

onerror r and allo
report containing those details.

 is buggy in Netscape 6. Although the function you
specify is triggered when an error occurs, the three arguments that are passed are

 other browsers that supincorrect and unusable. Netscape 6 and

try/catch statement. (See Chapter 6 for details.)

13.6 The Navigator Object
The Window.navigator property refers to a Navigator object that contains information
about the web browser as a whole, such as the version and a list of the data formats it can
display. The Navigator object is named after Netscape Navigator, but it is also supported
by Internet Explorer. IE also supports clientInformation as a vendor-neutral synonym
for navigator. Unfortunately, Netscape and Mozilla do not support this property.

The Navigator object has five main properties that provide version information about the
browser that is running:

appName

The simple name of the web browser.

appVersion

The version number and/or other version information for the browser. Note that
this should be considered an "internal" version number, since it does not always
correspond to the version number displayed to the user. For example, Netscape 6

reports a version number of 5.0, since there never was a Netscape 5 release. Also,
IE Versions 4 through 6 all report a version number of 4.0, to indicate

fourth-generation browsers.

appCodeName

The code name of the browser. Netscape uses the code name "Mozilla" as the
value of this property. For compatibility, IE does the same thing.

platform

The hardware platform on which the browser is running. This property was added
in JavaScript 1.2.

The following lines of JavaScript code display each of these Navigator object properties
in a dialog box:

var browser = "BROWSER INFORMATION:\n";
for(var propname in navigator) {
 browser += propname + ": " + navigator[propname] + "\n"
}
alert(browser);

compatibility with the baseline functionality of

userAgent

The string that the browser sends in its USER-AGENT HTTP header. This property
typically contains all the information in both appName and appVersion.

Figure 13-2 shows the dialog box displayed when the code is run on IE 6.

Figure 13-2. Navigator object properties

As you can see from Figure 13-2, the properties of the Navigator object have values that
are sometimes more complex than we are interested in. We are often interested in only
the first digit of the appVersion property, for example. When using the Navigator object
to test browser information, we often use methods such as parseInt() and

 want. Example 13-3String.indexOf() to extract only the information we shows some
tor object and stores them in

an object named browser. These properties, in their processed form, are easier to use
than the raw navigator properties. The general term for code like this is a "client

code that does this: it processes the properties of the Naviga

sniffer," and you can find more complex and general-purpose sniffer code on the
Internet.[1] For many purposes, however, something as simple as that shown in Example
13-3 works just fine.

[1] See, for example, http://www.mozilla.org/docs/web-developer/sniffer/browser_type.html.

Example 13-3. Determining browser vendor and version
/*

ript SRC="browser.js"></script>
 *
 * A simple "sniffer" that determines browser version and vendor.
 * It creates an object named "browser" that is easier to use than
 * the "navigator" object.
 */
// Create the browser object
var browser = new Object();

// Figure out the browser's major version
browser.version = parseInt(navigator.appVersion);
// Now figure out if the browser is from one of the two
// major browser vendors. Start by assuming it is not.
browser.isNetscape = false;
browser.isMicrosoft = false;

 * File: browser.js
 * Include with: <sc

if (navigator.appName.indexOf("Netscape") != -1)
 browser.isNetscape = true;
else if (navigator.appName.indexOf("Microsoft") != -1)
 browser.isMicrosoft = true;

13.7 The Screen Object
In JavaScript 1.2, the screen property of a Window object refers to a Screen object that

,

The colorDepth property specifies the base-2 logarithm of the number of colors that can
be displayed. Often, this value is the same as the number of bits per pixel used by the
display. For example, an 8-bit display can display 256 colors, and if all of these colors
were available for use by the browser, the screen.colorDepth property would be 8. In
some circumstances, however, the browser may restrict itself to a subset of the available
colors, and you might find a screen.colorDepth value that is lower than the bits-per-
pixel value of the screen. If you have several versions of an image that were defined
using different numbers of colors, you can test this colorDepth property to decide which
version to include in a document.

Example 13-4

provides information about the size of the user's display and the number of colors
available on it. The width and height properties specify the size of the display in pixels.
The availWidth and availHeight properties specify the display size that is actually
available; they exclude the space required by features such as the Windows taskbar. You
can use these properties to help you decide what size images to include in a document
for example, or what size windows to create in a program that creates multiple browser
windows.

, later in this chapter, shows how the Screen object can be used.

The Window object defines several methods that allow high-level control of the window
itself. The following sections explore how these methods allow us to open and close
windows, control window position and size, request and relinquish keyboard focus, and
scroll the contents of a window. We conclude with an example that demonstrates several
of these features.

13.8.1 Opening Windows

You can open a new web browser window with the open() method of the Window
object. This method takes four optional arguments and returns a Window object that
represents the newly opened window. The first argument to open() is the URL of the
document to display in the new window. If this argument is omitted (or is null or the
empty string), the window will be empty.

13.8 Window Control Methods

The second argument to open() is the name of the window. As we'll discuss later in the
chapter, this name can be useful as the value of the target attribute of a <form> or <a>
tag. If you specify the name of a window that already exists, open() simply returns a
reference to that existing window, rather than opening a new one.

The third optional argument to open() is a list of features that specify the window size

ould use
the following line of JavaScript:

ndow.open("smallwin.html", "smallwin",
es,resizable=yes");

 specify
on for the full set of

ames an
at specifies whether

e the current entry in the window's
indow's browsing history (false),

ehavior.

 newly
efer to the

window
within which your code is running. But what about the reverse situation? What if
JavaScript code in the new it? In

indow from
which it was opened. If the

A rtant point about the open() method is that it is almost always invoked as
hould therefore be

entirely optional. window is explicitly specified because the Document object also has an
 clear what we are

and GUI decorations. If you omit this argument, the new window is given a default size
and has a full set of standard features: a menu bar, status line, toolbar, and so on. On the
other hand, if you specify this argument, you can explicitly specify the size of the
window and the set of features it includes. For example, to open a small, resizeable
browser window with a status bar but no menu bar, toolbar, or location bar, you c

var w = wi
 "width=400,height=350,status=y

Note that when you specify this third argument, any features you do not explicitly
are omitted. See Window.open() in the client-side reference secti
available features and their names.

The fourth argument to is useful only when the second argument nopen()
ready existing window. This fourth argument is a boolean value thal

the URL specified as the first argument should replac
e) or create a new entry in the wbrowsing history (tru

hich is the default bw

The return value of the open() method is the Window object that represents the
created window. You can use this Window object in your JavaScript code to r

w window, just as you use the implicit Window object to refer to the window ne

window wants to refer back to the window that opened
JavaScript 1.1 and later, the opener property of a window refers to the w

window was created by the user instead of by JavaScript
code, the property is null. opener

n impo
window.open(), even though window refers to the global object and s

open() method, so specifying window.open() helps to make it very
trying to do. This is not just a helpful habit; it is required in some circumstances, because,

 we'll learn in as Chapter 19, event handlers execute in the scope of the object that defines
or example, the scope chain

on object, the Form object that contains the button, the Document object
form, and, finally, the Window object that contains the document. Thus,

s identifier ends up

them. When the event handler of an HTML button executes, f
includes the Butt
that contains the
if such an event handler refers merely to the open() method, thi

being resolved in the Document object, and the event handler opens a new document
ening a new window! rather than op

We'll see the open() method in use in Example 13-4.

13.8.2 Closing Windows

Just as the open() method opens a new window, the close() method closes one. If
we've created a Window object w, we can close it with:

w.close();

JavaScript code running within that window itself could close it with:

window.close();

xist after the window it
esents has been closed. You should not attempt to use any of its properties or

 errors, it is a good idea to check periodically that the window you are trying to use
ne in Example 13-4

Again, note the explicit use of the window identifier to disambiguate the close()
method of the Window object from the close() method of the Document object.

Most browsers allow you to automatically close only those windows that your own
JavaScript code has created. If you attempt to close any other window, the user is
presented with a dialog box that asks him to confirm (or cancel) that request to close the
window. This precaution prevents inconsiderate scripters from writing code to close a
user's main browsing window.

In JavaScript 1.1 and later, a Window object continues to e
repr
methods, however, except to test the closed property. This property is true if the
window has been closed. Remember that the user can close any window at any time, so to
avoid
is still open. We'll see this do .

e specified

r to make

13.8.3 Window Geometry

In JavaScript 1.2, moveTo() moves the upper-left corner of the window to th
coordinates. Similarly, moves the window a specified number of pixels left or moveBy()
right and up or down. and resize the window by an absolute resizeTo() resizeBy()
or relative amount; they are also new in JavaScript 1.2. Note that in order to prevent

 user security attacks that rely on code running in small or offscreen windows that the
does not notice, browsers may restrict your ability to move windows offscreen o
them too small.

13.8.4 Keyboard Focus and Visibility

.
 window, and blur(

ow.open(
w on top.

n(
 method does not automatically make that window visible. Thus, it is common practice

().

13.8.5 Scrolling

or

n

Script 1.2 scrollTo() method. scrollTo() is the

ment object are
ecify the location of the

 use these values in conjunction with the
scrollTo() method to scroll to known locations within the document. Alternatively, in
IE 4 and later and Netscape 6 and later, document elements all define a focus()
method. Invoking this method on an element causes the document to scroll as needed to
ensure that the element is visible.

13.8.6 Window Methods Example

Example 13-4

The focus() and blur() methods also provide high-level control over a window
Calling focus() requests that the system give keyboard focus to the
) nquishes keyboard focus. In addition, the focus() method ensures that the window reli
is visible by moving it to the top of the stacking order. When you use the Wind
) method to open a new window, the browser automatically creates that windo
But if the second argument specifies the name of a window that already exists, the ope
)
to follow calls to open() with a call to focus

focus() and blur() are defined in JavaScript 1.1 and later.

The Window object also contains methods that scroll the document within the window
frame. scrollBy() scrolls the document displayed in the window by a specified
number of pixels left or right and up or down. scrollTo() scrolls the document to a
absolute position. It moves the document so that the specified document coordinates are
displayed in the upper-left corner of the document area within the window. These two
methods are defined in JavaScript 1.2. In JavaScript 1.1, the scroll() method performs
the same function as the Java
preferred method, but the scroll() method remains for backward compatibility.

In JavaScript 1.2, the elements of the anchors[] array of the Docu
operties that spAnchor objects. Each Anchor object has x and y pr

anchor within the document. Thus, you can

 demonstrates the Window open() , close(), and moveTo() methods
and several other window-programming techniques that we've discussed. It creates a new
window and then uses setInterval() to repeatedly call a function that moves it around
the screen. It determines the size of the screen with the Screen object and then uses this
information to make the window bounce when it reaches any edge of the screen.

Example 13-4. Moving a window
<script>
// Here are the initial values for our animation
var x = 0, y = 0, w=200, h=200; // Window position and size
var dx = 5, dy = 5; // Window velocity
var interval = 100; // Milliseconds between updates

// Create the window that we're going to move around
// The javascript: URL is simply a way to display a short document

r
al("bounce()", interval);

// This function moves the window by (dx, dy) every interval ms
// It bounces whenever the window reaches the edge of the screen
function bounce() {
 // If the user closed the window, stop the animation
 if (win.closed) {
 clearInterval(intervalID);
 return;
 }

 // Bounce if we have reached the right or left edge
 if ((x+dx > (screen.availWidth - w)) || (x+dx < 0)) dx = -dx;

 // Bounce if we have reached the bottom or top edge
 if ((y+dy > (screen.availHeight - h)) || (y+dy < 0)) dy = -dy;

 // Update the current position of the window
 x += dx;
 y += dy;

 // Finally, move the window to the new position
 win.moveTo(x,y);
}
</script>

<!-- Clicking this button stops the animation! -->
<form>

location rence to a Location object -- a
representation of the URL o layed in that window. The
href property of the Location object is a string plete text of the
URL. Other properties of this object, such as protocol, host, pathname, and search,
specify the various individual parts of the URL.

// The final argument specifies the window size
var win = window.open('javascript:"<h1>BOUNCE!</h1>"', "",
 "width=" + w + ",height=" + h);

// Set the initial position of the window
win.moveTo(x,y);

// Use setInterval() to call the bounce() method every interval
// milliseconds. Store the return value so that we can stop the
// animation by passing it to clea Interval().
var intervalID = window.setInterv

<input type="button" value="Stop"
 onclick="clearInterval(intervalID); win.close();">
</form>

13.9 The Location Object
The property of a window is a refe

f the document currently being disp
that contains the com

The search property of the Location object is an interesting one. It contains any portion
of a URL following (and including) a question mark. This is often some sort of query
string. In general, the question-mark syntax in a URL is a technique for embedding
arguments in the URL. While these arguments are usually intended for CGI scripts run on
a server, there is no reason why they cannot also be used in JavaScript-enabled pages.
Example 13-5 shows the definition of a general-purpose getArgs() function that you
can use to extract arguments from the search property of a URL. It also shows how this
getArgs() method could have been used to set initial values of the bouncing window
animation parameters in Example 13-4.

Example 13-5. Extracting arguments from a URL
/*
 * This function parses comma-separated name=value argument pairs from
 * the query string of the URL. It stores the name=value pairs in
 * properties of an object and returns that object.
 */
function getArgs() {
 var args = new Object();
 var query = location.search.substring(1); // Get query string
 var pairs = query.split(","); // Break at comma
 for(var i = 0; i < pairs.length; i++) {

name=value"
 if (pos == -1) continue; // If not found, skip

 var value = pairs[i].substring(pos+1); // Extract the value
 args[argname] = unescape(value); // Store as a

of

 return args; // Return the object

 * We could have used getArgs() in the previous bouncing window

var args = getArgs(); // Get arguments
 // If arguments are

ues
if (args.w) w = parseInt(args.w);
 (args.h) h = parseInt(args.h);

used as if it were itself a primitive
tion object, you get the same string as you

roperty of the object (because the Location object has a

 var pos = pairs[i].indexOf('='); // Look for
"

 var argname = pairs[i].substring(0,pos); // Extract the name

property
 // In JavaScript 1.5, use decodeURIComponent() instead
unescape()
 }

}

 /*

example
nimation parameters from the URL * to parse optional a

/ *

if (args.x) x = parseInt(args.x);
fined... de

if (args.y) y = parseInt(args.y); // override default val

if
if (args.dx) dx = parseInt(args.dx);
if (args.dy) dy = parseInt(args.dy);
if (args.interval) interval = parseInt(args.interval);

In addition to its properties, the Location object can be
 value of a Locastring value. If you read the

would if you read the href p

suitable toString() method). What is far more interesting, though, is that you can
the
d

xample, you might assign a URL to the

 can't display DHTML

ic HTML
if (parseInt(navigator < 4)

 location = "staticpage.html";

u can
 display a new web page, assigning a URL to the location

e 13-

assign a new URL string to the location property of a window. Assigning a URL to
Location object this way has an important side effect: it causes the browser to load an
display the contents of the URL you assign. For e
location property like this:

// If the user is using an old browser that
content,
// redirect to a page that contains only stat

.appVersion)

As you can imagine, making the browser load specified web pages into windows is a very
important programming technique. While you might expect there to be a method yo
call to make the browser
property of a window is the supported technique for accomplishing this end. Exampl
6, later in this chapter, includes an example of setting the property. location

Although the
signing a U

 Location object does not have a method that serves the same function as
RL directly to the location property of a window, this object does support

e from the web server. The method loads and displays a URL
 assigning

ting a
 to overwrite one

 to the original
 as it does if you load the new document by assigning a URL to the location

ary pages (perhaps
ce temporary pages are

not stored in the history list, the Back button is more useful to the user.

 a
 a

e

nt.location contains the URL as loaded, and location.href
contains the URL as originally requested.

13.10 The History Object
The history property of the Window object refers to a History object for the window.
The History object was originally designed to model the browsing history of a window as

as
two methods (added in JavaScript 1.1). The reload() method reloads the currently
displayed pag replace()
that you specify. But invoking this method for a given URL is different than
that URL to the location property of a window. When you call replace(), the

 URL replaces the current one in the browser's history list, rather than creaspecified
new entry in that history list. Therefore, if you use replace()
document with a new one, the Back button does not take the user back
document,
property. For web sites that use frames and display a lot of tempor
generated by a CGI script), using replace() is often useful. Sin

Finally, don't confuse the location property of the Window object, which refers to
Location object, with the location property of the Document object, which is simply
read-only string with none of the special features of the Location object.
document.location is a synonym for document.URL, which in JavaScript 1.1 is th
preferred name for this property (because it avoids the potential confusion). In most
cases, document.location is the same as location.href. When there is a server
redirect, however, docume

an array of recently visited URLs. This turned out to be a poor design choice, however;
for important security and privacy reasons, it is almost never appropriate to give a script
access to the list of web sites that the user has previously visited. Thus, the array elements
of the History object are never actually accessible to scripts (except when the user has

 of the

ods

 a window's (or frame's)
browsing history, replacing the currently displayed document with a previously viewed

at happens when the user clicks on the Back and Forward
browser buttons. The third method, go(), takes an integer argument and can skip
forward or backward in the history list by multiple pages. Unfortunately, suffers

Example 13-6

granted permission to a signed script in Netscape 4 and later). The length property
History object is accessible, but it does not provide any useful information.

Although its array elements are inaccessible, the History object supports three meth
(which can be used by normal, unsigned scripts in all browser versions). The back()
and forward() methods move backward or forward in

one. This is similar to wh

go()
from bugs in Netscape 2 and 3 and has incompatible behavior in Internet Explorer 3; it is
best avoided prior to fourth-generation browsers.

 shows how you might use the back() and forward() methods of the
bjects to add a navigation bar to a framed web site. Figure 13-3History and Location o

shows what a navigation bar looks like. Note that the example uses JavaScript with

d in detail in Chapter 15

multiple frames, which is something we will discuss shortly. It also contains a simple
HTML form and uses JavaScript to read and write values from the form. This behavior is
covere .

 bar Figure 13-3. A navigation

Example 13-6. A n objects
<!-- This file implements a navigation bar, designed to go in a frame
at
 the bottom of a window. Include it in a frameset like the

<script>
// The function is invoked by the Back button in our navigation bar
function go_back()
{
 // First, clear the URL entry field in our form
 document.navbar.url.value = "";

 // Then use the History object of the main frame to go back
 parent.frames[0].history.back();

 // Wait a second, and then update the URL entry field in the form

ref;",
 1000);

}

// This function is invoked by the Forward button in the navigation
bar;
// it works just like the previous one
function go_forward()
{
 document.navbar.url.value = "";

()

frame to the URL

 parent.frames[0].location = document.navbar.url.value;
}

event handlers that invoke the functions

 navigation bar using the History and Locatio

following:
 <frameset rows="*,75">
 <frame src="about:blank">
 <frame src="navigation.html">
 </frameset>
-->

 // from the location.href property of the main frame. The wait
seems
 // to be necessary to allow the location.href property to get in
sync.
 setTimeout("document.navbar.url.value =
parent.frames[0].location.h

 parent.frames[0].history.forward();
 setTimeout("document.navbar.url.value =
parent.frames[0].location.href;",
 1000);
}

// This function is invoked by the Go button in the navigation bar and
also
// when the form is submitted (when the user hits the Return key)
function go_to
{
 // Just set the location property of the main
 // the user typed in

</script>

<!-- Here's the form, with
bove --> a

<form name="navbar" onsubmit="go_to(); return false;">
 <input type="button" value="Back" onclick="go_back()
 <input type="button" value="Forward" onclick="go_forward();">

;">

 <input type="button" value="Go" onclick="go_to();">
</form>

aScript makes little distinction between windows and frames. In the most
interesting applications, there is JavaScript code that runs independently in each of
several windows. The next section explains how the JavaScript code in each window can
interact and cooperate with each of the other windows and with the scripts running in
each of those windows.

13.11.1 Relationships Between Frames

We've already seen that the open() method of the Window object returns a new
Window object representing the newly created window. We've also seen that this new
window has an opener property that refers back to the original window. In this way, the
two windows can refer to each other, and each can read properties and invoke methods of
the other. The same thing is possible with frames. Any frame in a window can refer to
any other frame through the use of the frames, parent, and top properties of the
Window object.

Every window has a frames property. This property refers to an array of Window
objects, each of which represents a frame contained within the window. (If a window
does not have any frames, the frames[] array is empty and frames.length is zero.)
Thus, a window (or frame) can refer to its first subframe as frames[0], its second
subframe as frames[1], and so on. Similarly, JavaScript code running in a window can

mes[2]

h it

mes[1]

 URL:
 <input type="text" name="url" size="50">

13.11 Multiple Windows and Frames
Most of the client-side JavaScript examples we've seen so far have involved only a single
window or frame. In the real world, JavaScript applications often involve multiple
windows or frames. Recall that frames within a window are represented by Window
objects; Jav

refer to the third subframe of its second frame like this:

frames[1].fra

Every window also has a parent property, which refers to the Window object in whic
is contained. Thus, the first frame within a window might refer to its sibling frame (the
second frame within the window) like this:

parent.fra

If a window is a top-level window and not a frame, parent simply refers to the win
itself:

parent == self; // For any top-level window

dow

If a frame is contained within another frame that is contained within a top-level window,
that frame can refer to the top-level window as parent.parent. The top property is a

irect children of a
top-level window, the top property is the same as the parent property.

Frames are typically created with <frameset> and <frame> tags. In HTML 4, however,
as implemented in IE 4 and later and Netscape 6 and later, the tag can also be

es created with <iframe> are the same as frames created with <frameset> and
s to both kinds of frames.

igure 13-4

general-case shortcut, however: no matter how deeply a frame is nested, its top property
refers to the top-level containing window. If a Window object represents a top-level
window, top simply refers to that window itself. For frames that are d

<iframe>
used to create an "inline frame" within a document. As far as JavaScript is concerned,
fram
<frame>. Everything discussed here applie

F illustrates these relationships between frames and shows how code running in

ee

Figure 13-4. Relationships between frames

any one frame can refer to any other frame through the use of the frames, parent, and
top properties. The figure shows a browser window that contains two frames, one on top
of the other. The second frame (the larger one on the bottom) itself contains thr
subframes, side by side.

ith this understanding of the relationships between frames, you may want to revisit
Example 13-6
W

, paying particular attention this time to the way the code (which is written

e Names

The second, optional argument to the open() method discussed earlier is a name for the

tion

to run in a second frame) refers to the history and location properties of the first
frame.

13.11.2 Window and Fram

newly created window. When you create a frame with the HTML <frame> tag, you can
specify a name with the name attribute. An important reason to specify names for
windows and frames is that those names can be used as the value of the target attribute
of the <a>, <map> , and <form> tags. This value tells the browser where you want to
display the results of activating a link, clicking on an image map, or submitting a form.

For example, if you have two windows, one named table_of_contents and the other
mainwin, you might have HTML like the following in the table_of_contents window:

 Chapter 1, Introduc

The browser loads the specified URL when the user clicks on this hyperlink, but instead
of displaying the URL in the same window as the link, it displays it in the window named
mainwin. If there is no window with the name mainwin, clicking the link creates a new
window with that name and loads the specified URL into it.

is
 the parent Window object. The n hat
e of the frame. Therefore, you might create a frame with

 src="toc.html">

nd relying on) a

 can

l window has no name, so it cannot be used with the target attribute. If you
roperty of the window, however, you can then use that name in target

The target and name attributes are part of HTML and operate without the intervention of
JavaScript, but there are also JavaScript-related reasons to give names to your frames.
We've seen that every Window object has a frames[] array that contains references to
each of its frames. This array contains all the frames in a window (or frame), whether or
not they have names. If a frame is given a name, however, a reference to that frame
also stored in a new property of ame of t new
property is the same as the nam
HTML like this:

<frame name="table_of_contents"

Now you can refer to that frame from another, sibling frame with:

parent.table_of_contents

This makes your code easier to read and understand than using (a
hardcoded array index, as you'd have to do with an unnamed frame:

parent.frames[1]

The property of any Window object contains the namname e of that window. In
vaScript 1.0, this property is read-only. In JavaScript 1.1 and later, however, youJa

set this property, thereby changing the name of a window or a frame. One common
hen a browser starts reason to do this is to set the name of the initial browser window. W

up, the initia
e pset the nam

attributes.

13.11.3 JavaScript in Interacting Windows

Recall what we learned in Chapter 12: the Window object serves as the global object for
context for all

rame is an
bject is its own

espace and its own set of global
 multiple frames or windows, global

 all that global, after all!

client-side JavaScript code, and the window serves as the execution
JavaScript code it contains. This holds true for frames as well: every f
independent JavaScript execution context. Because every Window o
global object, each window defines its own nam

n viewed from the perspective ofvariables. Whe
variables do not seem

A
th

lthough each window and frame defines an independent JavaScript execution context,
is does not mean that JavaScript code running in one window is isolated from code

running in other windows. Code running in one frame has a different Window object at
e top of its scope chain than code running in another frame. However, the code from
th frames is executed by the same JavaScript interpreter, in the same JavaScript

ent. As we've seen, one frame can refer to any other frame using the frames,
rent, and top properties. So, although JavaScript code in different frames is executed

ith different scope chains, the code in one frame can still refer to and use the variables
d functions defined by code in another frame.

r example, suppose code in frame A defines a variable i:

r i = 3;

at variable is nothing more than a property of the global object -- a property of the
indow object. Code in frame A could refer to the variable explicitly as such a property
ith either of these two expressions:

ndow.i
lf.i

ow suppose that frame A has a sibling frame B that wants to set the value of the
riable i defined by the code in frame A. If frame B just sets a variable i, it merely
cceeds in creating a new property of its own Window object. So instead, it must
plicitly refer to the property i in its sibling frame with code like this:

function keyword that defines functions declares a variable just like the
r keyword does. If JavaScript code in frame A declares a function f, that function is
fined only within frame A. Code in frame A can invoke f like this:

);

ode in frame B, however, must refer to f as a property of the Window object of frame
:

rent.frames[0].f();

 the code in frame B needs to use this function frequently, it might assign the function
 a variable of frame B so that it can more conveniently refer to the function:

th
bo
environm
pa
w
an

Fo

va

Th
W
w

wi
se

N
va
su
ex

parent.frames[0].i = 4;

Recall that the
va
de

f(

C
A

pa

If
to

var f = parent.frames[0].f;

Now code in frame B can invoke the function as f(), just as code in frame A does.

When you share functions between frames or windows like this, it is very important to
keep the rules of lexical scoping in mind. A function is executed in the scope in which it
was defined, not in the scope from which it is invoked. Thus, to continue with the
previous example, if the function f refers to global variables, these variables are looked
up as properties of frame A, even when the function is invoked from frame B.

If you don't pay careful attention to this, you can end up with programs that behave in
unexpected and confusing ways. For example, suppose you define the following function
in the <head> section of a multiframe document, with the idea that it will help with
debugging:

function debug(msg) {
 alert("Debugging message from frame: " + name + "\n" + msg);
}

The JavaScript code in each of your frames can refer to this function as top.debug().
Whenever this function is invoked, however, it looks up the variable name in the context

ions, so when you define a class of objects with
 class is defined only for a

efined in Chapter 8

of the top-level window in which the function is defined, rather than the context of the
frame from which it is invoked. Thus, the debugging messages always carry the name of
the top-level window, rather than the name of the frame that sent the message, as was
intended.

Remember that constructors are also funct
a constructor function and an associated prototype object, that
single window. Recall the Complex class we d , and consider the

ows="50%,50%">
 <frame name="frame1" src="frame1.html">
 <frame name="frame2" src="frame2.html">
</frameset>

reate a Complex object
with an expression like this:

var c = new Complex(1,2); // Won't work from either frame

following multiframed HTML document:

<head>
<script src="Complex.js"></script>
</head>
<frameset r

JavaScript code in the files frame1.html and frame2.html cannot c

Instead, code in these files must explicitly refer to the constructor function:

Alternatively, code in either frame can define its own variable to refer more conveniently
ctor function:

var Co
var c = new Complex(1,2);

ned constructors, predefined constructors are automatically predefined in
all win
constru

 constructor and the String.prototype
for manipulating JavaScript strings and then make

ng.prototype object in the
w method. However, the new

method is not accessible to strings defined in other windows. Note that it does not matter
nly the window in which the string was

13.11

Examp

var c = new top.Complex(3,4);

to the constru

mplex = top.Complex;

Unlike user-defi
dows. Note, however, that each window has an independent copy of the
ctor and an independent copy of the constructor's prototype object. For example,

each window has its own copy of the String()
object. So, if you write a new method
it a method of the String class by assigning it to the Stri
current window, all strings in that window can use the ne

which window holds a reference to the string; o
actually created matters.

.4 Example: Colored Frames

le 13-7, a frame set that defines a grid of nine frames, demonstrates some of t
ues we've discussed in this chapter. The

he
techniq des a
<scrip unction named setcolor(). The onload event
handler of the <frameset> tag invokes setcolor() once for each of the nine frames.

indow object as its argument. It generates a random color and
uses it mpty
except ethod to
schedule itself to be called again in one second. This call to setTimeout() is the most

t of the example. Notice especially how it uses the parent and name
indow objects.

Examp
<head>

es</title>

function setcolor(w) {
 //
 va
 va
 var b = Math.floor((Math.random() * 256)).toString(16);
 var colorString = "#" + r + g + b;

<head>
 that defines a JavaScript f

 section of the frame set inclu
t>

setcolor() is passed a W
with the Document.write() method to create a new document that is e
for a background color. Finally, setcolor() uses the setTimeout() m

interesting par
properties of W

le 13-7. A frame color animation

<title>Colored Fram
<script>

 Generate a random color
r r = Math.floor((Math.random() * 256)).toString(16);
r g = Math.floor((Math.random() * 256)).toString(16);

 //
 w.document.write("<body bgcolor='" + colorString + "'></body>");
 w.document.close();

 // Schedule another call to this method in one second.
 // Since we call the setTimeout() method of the frame, the string
 // will be executed in that context, so we must prefix properties
 //
 w.

 // We could also have done the same thing more simply like this:
 // setTimeout('setcolor(' + w.name + ')', 1000);
}
</script>
</head>
<frameset rows="33%,33%,34%" cols="33%,33%,34%"
 onlo
<frame name="f1" src="javascript:''"><frame name="f2"
src="javascript:''">
<frame name="f3" src="javascript:''"><frame name="f4"
src="javascript:''">
<frame name="f5" src="javascript:''"><frame name="f6"
src="j
<frame name="f7" src="javascript:''"><frame name="f8"
src="javascript:''">

 src="javascript:''">

 Set the frame background to the random color

 of the top-level window with "parent.".
setTimeout('parent.setcolor(parent.' + w.name + ')', 1000);

ad="for(var i = 0; i < 9; i++) setcolor(frames[i]);">

avascript:''">

<frame name="f9"
</frameset>

Chapter 14. The Document Object
Every Window object has a document property. This property refers to a Document

the HTML document displayed in the window. The Document
ct in client-side JavaScript. We've

already seen several examples in this book that use the write() method of the
Document object to insert dynamic content into a document while it is being parsed. In

d, and so on.

it is the Doc ess to the content of
otherwise static documents. In addition to the properties that provide information about a

h t all the HTML forms in the document. And the
images[] and applets[] arrays contain objects that represent the images and applets in

pen up a world of possibilities
hapter is devoted to

documenting them.

uch as IE 4 and later and
Netscape 6 and later, implement a full document object model, or DOM, that gives

d

object that represents
object is probably the most commonly used obje

addition to the frequently used write() method, the Document object defines properties
that provide information about the document as a whole: its URL, its last-modified date,
the URL of the document that linked to it, the colors in which it is displaye

Client-side JavaScript exists to turn static HTML documents
ument object that gives JavaScript interactive acc

into interactive programs --

document as a whole, the Document object has a number of very important properties
that provide information about document content. The forms[] array, for instance,
contains Form objects t at represen

the document. These arrays and the objects they contain o
for client-side JavaScript programs, and the bulk of this c

This chapter covers the core features of the Document object that are implemented by
virtually every JavaScript-enabled browser. Newer browsers, s

JavaScript complete access to and control over all document content. These advance
DOM features are covered in Chapter 17.

14.1 Document Overview
To illustrate the scope and importance of the Document object, this chapter begins with a
quick summary of the methods and properties of the object. The following sections also
explain other important material that is important to understand before reading the rest of
the chapter.

14.1.1 Document Methods

The Document object defines four key methods. One is the write() method, which
we've already seen several times, and the other three are related:

close()

Close or end a document that was begun with open().

open()

Begin a new document, erasing any existing document content.

write()

Append text to the currently open document.

Output text into the currently open docu d appe ne character.

4.1.2 Document Properties

 , ,

These properties describe the colors of hyperlinks. linkColor is the normal color

anchors[]

ent the Java applets in the document.

bgColor, fgColor

The background and foreground (i.e., text) colors of the document. These
properties correspond to the bgcolor and text attributes of the <body> tag.

cookie

writeln()

ment, an nd a newli

1

The Document object defines the following properties:

alinkColor linkColor vlinkColor

of an unvisited link. vlinkColor is the normal color of a visited link.
alinkColor is the color of a link while it is activated (i.e., while the user is
clicking on it). These properties correspond to the alink , link, and vlink
attributes of the <body> tag.

An array of Anchor objects that represent the anchors in the document.

applets[]

An array of Applet objects that repres

A special property that allows JavaScript programs to read and write HTTP
cookies. See Chapter 16 for details.

domain

et A property that allows mutually trusted web servers within the same Intern
domain to collaboratively relax certain security restrictions on interactions

n their web pages. See betwee Chapter 21.

forms[]

An array of Form objects that represent the <form> elements in the document.

images[]

An array of Image objects that represent the elements in the document.

lastModified

location

A deprecated synonym for the URL property.

 that brought the browser to the
curre

title

The text between the <title> and </title> tags for this document.

A string that contains the modification date of the document.

links[]

An array of Link objects that represent the hypertext links in the document.

referrer

The URL of the document containing the link
nt document, if any.

URL

A string specifying the URL from which the document was loaded. The value of
this property is the same as the location.href property of the Window object,
except when a server redirect has occurred.

14.1.3 The Document Object and Standards

The Document object and the set of elements (such as forms, images, and links) that it
exposes to JavaScript programs form a document object model. Historically, different
browser vendors have implemented different DOMs, which has made it difficult for
JavaScript programmers to portably use the advanced features of the vendor-specific
DOMs. Fortunately, the World Wide Web Consortium (or W3C; see http://www.w3.org)

d has standardized a DOM and issued two versions of this standard, known as Level 1 an
Level 2. Recent browsers, such as Netscape 6 and later and IE 5 and later, implement
some or most of these standards. See Chapter 17 for all the details.

The DOM described in this chapter predates the W3C standards. By virtue of its nearly
e

evel 0 DOM. You can use the techniques described in this chapter in any JavaScript-
enabled web browser, with the exception of very old ones such as Netscape 2.

ect methods and properties listed previously have been
formalized as part of the Level 1 DOM, so they are guaranteed to remain supported by

O standard is that it is a document
object model for both XML and HTML documents. In this standard, the Document object
provides generic functionality of use for both types of documents. HTML-specific
functionality is provided by the HTMLDocument subclass. All the Document properties
and methods described in this chapter are HTML-specific, and you can find more details
about them under the "Document" entry in the client-side reference section of this book.
You'll also find related information in the DOM reference section, under "Document" and
"HTMLDocument."

14.1.4 Naming Document Objects

Before we begin our discussion of the Document object and the various objects it
exposes, there is one general principle that you'll find it helpful to keep in mind. As you'll
see, every <form> element in an HTML document creates a numbered element in the
forms[] array of the Document object. Similarly, every element creates an
element in the images[] array. The same applies for <a> and <applet> tags, which
define elements in the links[] and applets[] arrays.

In addition to these arrays, however, a Form, Image, or Applet object may be referred to
by name if its corresponding HTML tag is given a name attribute. When this attribute is

universal implementation, however, it is a de facto standard and is often referred to as th
L

Furthermore, the Document obj

future browsers.

ne important thing to understand about the W3C DOM

present, its value is used to expose the corresponding object as a property of the
Document object. So, for example, suppose an HTML document contains the following
form:

<form name="f1">
<input type="button" value="Push Me">
</form>

Assuming that the <form> is the first one in the document, your JavaScript code can refer
to the resulting Form object with either of the following two expressions:

document.forms[0] // Refer to the form by position within the document
document.f1 // Refer to the form by name

In fact, setting the name attribute of a <form> also makes the Form object accessible as a
named property of the forms[] array, so you could also refer to the form with either of
these two expressions:

document.forms.f1 // Use property syntax
document.forms["f1"] // Use array syntax

The same applies for images and applets: using the name attribute in your HTML allows
you to refer to these objects by name in your JavaScript code.

As you might imagine, it is convenient to give names to frequently used Document
We'll see this technique

es in this and later chapters.

jects and Event Handlers

ts within it must respond to user
lers briefly in Chapter 12

objects so that you can refer to them more easily in your scripts.
used a number of tim

14.1.5 Document Ob

To be interactive, an HTML document and the elemen
events. We discussed events and event hand , and we've seen

vent

Chapter 19

several examples that use simple event handlers. We'll see many more examples of e
orking with Document objects. handlers in this chapter, because they are key to w

Unfortunately, we must defer a complete discussion of events and event handlers until
. For now, remember that event handlers are defined by attributes of HTML

elements, such as onclick and onmouseover. The values of these attributes should be

ay to define event handlers that we'll occasionally see

strings of JavaScript code. This code is executed whenever the specified event occurs on
the HTML element.

In addition, there is one other w
used in this and later chapters. We'll see in this chapter that Document objects such as

tes of Form and Image objects have JavaScript properties that match the HTML attribu

the and tags. For example, the HTML tag ha<form> s src and
i

width
dth properties.

ent
as a

ther example, consider the attribute of
mit

uppercase, lowercase, or mixed-case. In JavaScript, all event handler properties must be
written in lowercase.

ipt code to an event
g a function to an

:

/form>

 that invokes a function and
ectly to the event handler

n name. That is because we don't want
 here; we just want to assign a reference to it. As another example,

sider the following <a> tag and its onmouseover event handler:

er="status='Get Help Now!';">Help

n to know that this <a> tag is the first one in the document, we can refer to the
ay

ocument.links[0].onmouseover = function() { status = 'Get Help
Now!'; }

See Chapter 19

attributes, and the JavaScript Image object has corresponding src and w
The same is true for event handlers. The HTML <a> tag supports an onclick ev

ject that represents a hyperlink hhandler, for example, and the JavaScript Link ob
corresponding property. As anoonclick onsubmit
the <form> element. In JavaScript, the Form object has a corresponding onsub
property. Remember that HTML is not case-sensitive, and attributes can be written in

In HTML, event handlers are defined by assigning a string of JavaScr
y are defined by assigninhandler attribute. In JavaScript, however, the

event handler property. Consider the following <form> and its onsubmit event handler

<form name="myform" onsubmit="return validateform();">...<

In JavaScript, instead of using a string of JavaScript code
returns its result, we could simply assign the function dir
property like this:

document.myform.onsubmit = validateform;

Note that there are no parentheses after the functio
to

n
invoke the function

co

<a href="help.html" onmouseov

If we happe
corresponding Link object as document.links[0] and set the event handler this w
instead:

d

 for a complete discussion of assigning event handlers in this way.

14.2 Dynamically Generated Documents
One of the most important features of the Document object (and perhaps of client-side
JavaScript in general) is the write() method, which allows you to dynamically
generate web-page content from your JavaScript programs. This method can be used in

two ways. The first and simplest way to use it is within a script, to output dynamically
generated HTML into the document that is currently being parsed. This was discussed in
Chapter 12. Consider the following code, which uses write() to add the current date
and the document's last-modified date to an otherwise static HTML document:

<script>
var today = new Date();
document.write("<p>Document accessed on: " + today.toString());
document.write("
Document modified on: " + document.lastModified);
</script>

Using the write() method in this way is an extremely common JavaScript
.

u can use the write() method to output HTML to the
ile that document is being parsed. That is, you can call
 within <script> tags only because these scripts are executed

cluding its event
ear as we

addition to adding dynamic content to the current document as it is being parsed,

on
g so can be a useful

th multiwindow or multiframe web sites. For example, JavaScript code in
 a multiframe site might display a message in another frame with code like

ames[0].document.open();
// Add some content to the document
parent.frames[0].document.write("<hr>Hello from your sibling
frame!<hr>");
// And close the document when we're done
parent.frames[0].document.close();
</script>

To create a new document, we first call the open() method of the Document object,
then call write() any number of times to output the contents of the document, and
finally call the close() method of the Document object to indicate that we have
finished. This last step is important; if you forget to close the document, the browser does

programming technique, and you'll see it in many scripts

Be aware, however, that yo
current document only wh
cument.write() fromdo

as part of the document parsing process. In particular, if you call document.write()
 invoked once the document has already from within an event handler and that handler is

been parsed, you will end up overwriting the entire document (in
handlers), instead of appending text to it. The reason for this will become cl
examine the second way to use the write() method.

In
write() can be used in conjunction with the open() and close() Document
methods to create entirely new documents within a window or frame. Although you

eascannot usefully write to the current document from an event handler, there is no r
why you can't write to a document in another window or frame; doin
technique wi

ne frame ofo
this:

<script>
// Start a new document, erasing any content that was already in
frames[0]
parent.fr

not stop the document loading animation it displays. Also, the browser may buffer the
HTML you have written; it is not required to display the buffered output until you
explicitly end the document by calling close().

In contrast to the close() call, which is required, the open() call is optional. If you
call the write() method on a document that has already been closed, JavaScript
implicitly opens a new HTML document, as if you had called the open() method. This
explains what happens when you call document.write() from an event handler within
the same document -- JavaScript opens a new document. In the process, however, the
current document (and its contents, including scripts and event handlers) is discarded.
This is never what you want to do, and it can even cause some early browsers (such as
Netscape 2) to crash. As a general rule of thumb, a document should never call write()

er, just as if they had been concatenated. So
instead of writing:

document.write("Hello, " + username + " Welcome to my home page!");

document.write(greeting, username, welcome);

ct also
very way
nores line

b ually doesn't make a difference, but as we'll see in a bit,
the writeln() method can be convenient when you're working with non-HTML

on itself from within an event handler.

A couple of final notes about the write() method. First, many people do not realize
that the write() method can take more than one argument. When you pass multiple
arguments, they are output one after anoth

you might equivalently write:

var greeting = "Hello, ";
var welcome = " Welcome to my home page!";

The second point to note about the write() method is that the Document obje
supports a writeln() method, which is identical to the write() method in e

t it appends a newline after outputting its arguments. Since HTML igexcept tha
reaks, this newline character us

documents.

Example 14-1 shows how you might create a complex dialog box with the Window
open() method and the methods of the Document object. This example registers an
onerror event handler function for the window; the function is invoked when a
JavaScript error occurs. The error handler function creates a new window and uses the
Document object methods to create an HTML form within the window. The form allows
the user to see details about the error that occurred and email a bug report to the aut
the JavaScript code.

hor of

Figure 14-1 shows a sample window. Recall from the discussion of the onerror error
hapter 13handler in C that Netscape 6 does not pass the correct arguments to the error

handler function. For this reason, the output on Netscape 6 does not match what is
illustrated here.

Figure 14-1. Using a browser window as a dialog box

ydomain.com";

// Define the error handler. It generates an HTML form so the user
// can report the error to the author.
function report_error(msg, url, line)
{
 var w = window.open("", // URL (none specified)
 "error"+error_count++, // Name (force it to be
unique)
 "resizable,status,width=625,height=400"); //
Features
 // Get the Document object of the new window

Example 14-1. Dynamically creating a dialog window
<script>
// A variable we use to ensure that each error window we create is
unique
var error_count = 0;

// Set this variable to your email address
var email = "myname@m

 var d = w.document;

 // Output an HTML document, including a form, into the new window
 // Note that we omit the optional call to document.open()
 d.write('<div align="center">');

 d.write('');
 d.write('OOPS.... A JavaScript Error Has Occurred!');
 d.write('
<hr size="4" width="80%">');

tion="mailto:' + email + '" method=post');

<input type="submit" value="Report Error"> ');
write('<input type="button" value="Dismiss" onclick="self.close(

);">');
 d.write('</div><div align="right">');

'+line +'">');

 when we're done
 d.close();

 // Return true from this error handler, so that JavaScript does not

 Document open() method with no arguments, it opens a new HTML
document. Remember, though, that web browsers can display a number of other data

 d.write('<form ac
 d.write(' enctype="text/plain">');
 d.write('');
 d.write('<i>Click the "Report Error" button to send a bug
report.</i>
');

.write(' d
 d.

 d.write('
Your name <i>(optional)</i>: ');
 d.write('<input size="42" name="name" value="">');
 d.write('
Error Message: ');
 d.write('<input size="42" name="message" value="' + msg + '">');
 d.write('
Document: <input size="42" name="url" value="' + url +
'">');
 d.write('
Line Number: <input size="42" name="line"
value="
 d.write('
Browser Version: ');
 d.write('<input size="42" name="version"
value="'+navigator.userAgent+'">');
 d.write('</div>');
 d.write('</form>');
 // Remember to close the document

 // display its own error dialog box
 return true;
}

// Before the event handler can take effect, we have to register it
// for a particular window
self.onerror = report_error;
</script>

<script>
// The following line of code purposely causes an error as a test
alert(no_such_variable);
</script>

14.2.1 Non-HTML Documents

When you call the

formats besides HTML text. When you want to dynamically create and display a
document using some other data format, you call the open() method with a single
argument, which is the MIME type you desire.[1]

[1] This argument to the method has not been standardized by the W3C DOM. It works in IEopen() 4 and later, and in Netscape 3 and 4.
e 6: only HTML documents are supported by that browser. Surprisingly, it does not work in Netscap

The MIME type for HTML is . The most common format besides HTML is text/html
plain text, with a MIME type of text/plain. If you want to use the write() meth
output text that uses newlines, spaces, and Tab characters for formatting, you should

cument b

od to
 open

y passing the string "text/plain" to the open() method. Example 14-2the do
shows one way you might do this. It implements a debug() function that you can use to
output plain-text debugging messages from your scripts into a separate window that
appears when needed. Figure 14-2 shows what the resulting window looks like.

Figure 14-2. A window for plain-text debugging output

Example 14-2. Creating a plain-text document
<script>
var _console = null;

function debug(msg)
{
 // Op

en a window the first time we are called, or after an existing
 // console window has been closed

ent.open("text/plain");

mple of using this script -->
 n = 0;</script>

 if ((_console == null) || (_console.closed)) {
 _console =
window.open("","console","width=600,height=300,resizable");
 // Open a document in the window to display plain text
 _console.docum

}

 // Make the window visible _console.focus();
 _console.document.writeln(msg); // Output the message to it
 // Note that we purposely do not call close(). Leaving the
 // document open allows us to append to it later.
}
</script>

-- Here's an exa<!

<script>var
orm> <f

<input type="button" value="Push Me"
d me:\t' + ++n + ' times.');"> onclick="debug('You have pushe

</form>

14.3 Document Color Properties

The bgColor , fgColor, linkColor, alinkColor, and vlinkColor properties of the
Document object specify foreground, background, and link colors for the document. They
are read/write properties, but they can be set only before the <body> tag is parsed. You
can set them dynamically with JavaScript code in the <head> section of a document, or
you can set them statically as attributes of the <body> tag, but you cannot set them
elsewhere. The exception to this rule is the bgColor property. In many browsers, you can
set this property at any time; doing so causes the background color of the browser
window to change.[2] Other than bgColor, the color properties of the Document object
merely expose attributes of the <body> tag and are basically uninteresting.

[2] There is a bug in Netscape 3 on Unix platforms such that changing the background color can make the contents of the page disappear
gs are

r

(usually until the window is scrolled or otherwise redrawn). In Netscape 6, you can set the bgColor only once; any additional settin
ignored.

Each of these color properties has a string value. To set a color, you can use one of the
predefined HTML color names, or you can specify the color as red, green, and blue colo
values, expressed as a string of six hexadecimal digits in the form #RRGGBB. You may
recall that Example 13-7 set the bgcolor attribute of the <body> tag to a color string

 in

 style
 probably should not write scripts that rely heavily on

roperties of the Document object provide information about the document as a

>

referrer is another interesting property: it contains the URL of the document from
which the user linked to the current document. One possible use is to save this value in a
hidden field of a form on your web page. When the user submits the form (for whatever
reason your page contains the form in the first place), you can save the referrer data on
the server so you can analyze the links that refer to your page and track the percentage of

expressed in this fashion.

In the W3C DOM standard, the color properties of the Document object are deprecated
favor of properties of the Element object that represents the <body> tag. Furthermore, the
HTML 4 standard deprecates the color attributes of the <body> tag in favor of CSS
sheets. What this means is that you
these doubly deprecated color properties!

14.4 Document Information Properties
Several p
whole. For example, the following code shows how you can use the lastModified,
title, and URL properties to include an automatic timestamp within a document. This
feature allows users to judge how up-to-date (or out-of-date) a document is, and it can
also be useful information when a document is printed.

<hr>
Document: <i><script>document.write(document.title);</script></i
URL: <i><script>document.write(document.URL);</script></i>

Last Update:
<i><script>document.write(document.lastModified);</script></i>

hits that come through various links. Another use of this property is a trick to prevent
unauthorized links to your page from working correctly. For example, suppose you want
to allow other sites to link only to the top-level page on your site. You can use the

 to

if (document.referrer == "" || document.referrer.indexOf("mysite.com")
== -1)
 window.location = "http://home.mysite.com";
</script>

Don't consider this trick to be any kind of serious security measure, of course. One
obvious flaw is that it doesn't work for browsers that don't support JavaScript or for users
who have disabled JavaScript.

14.5 Forms

tion,

handlers that add interactivity to a program.

Because forms and their elements are such a large and important part of client-side
JavaScript programming, they deserve a chapter of their own. We will return to the

referrer property in conjunction with the location property of the Window object
redirect any links from outside the site to the top-level home page:

<script>
// If linked from somewhere offsite, go to home page first

The forms[] array of the Document object contains Form objects that represent any
<form> elements in the document. Because HTML forms contain push buttons, text input
fields, and the other input elements that usually comprise the GUI of a web applica
the Form object is very important in client-side JavaScript. The Form object has an
elements[] property that contains objects that represent the HTML input elements
contained within the form. These Element objects allow JavaScript programs to set
default values in the form and to read the user's input from the form. They are also
important sites for the event

forms[] array and the Form object in Chapter 15.

14.6 Images
The images[] property of the Document object is an array of Image elements, each
representing one of the inline images, created with an tag, that is contained in the
document. The images[] array and the Image object were added in JavaScript 1.1. While
web b on
of the
manipulate those images.

14.6.1 Image Replacement with the src Property

The main feature of the Image object is that its src property is read/write. You can read
this property to obtain the URL from which an image was loaded, and, more importantly,

rowsers have always been able to display images with the tag, the additi
 Image object was a major step forward -- it allowed programs to dynamically

you can set the src property to make the browser load and display a new image in the
same space. For this to work, the new image must have the same width and height as the
original one.

In practice, the most common use for image replacement is to implement image rollovers,
in which an image changes when the mouse pointer moves over it. When you make
images clickable by placing them inside your hyperlinks, rollover effects are a powerful
way to invite the user to click on the image. Here is a simple HTML fragment that
displays an image within an <a> tag and uses JavaScript code in the onmouseover and
onmouseout event handlers to create a rollover effect:

<a href="help.html"

 name

nd
hat

 simply by setting the property of the image to the URLs of the desired

ther
cks

ow it
e

rray of the

 onmouseover="document.helpimage.src='images/help_rollover.gif';"
rc='images/help.gif';"> onmouseout="document.helpimage.s

<img name="helpimage" src="images/help.gif" width="80" height="20"
border="0">

Note that in this code fragment we gave the tag a attribute, to make it easy to
refer to the corresponding Image object in the event handlers of the <a> tag. We used the
border attribute to prevent the browser from displaying a blue hyperlink border arou
the image. The event handlers of the <a> tag do all the work: they change the image t
is displayed src
images.

The ability to dynamically replace one image in a static HTML document with ano
image opens the door to any number of special effects, from animation to digital clo
that update themselves in real time. With a bit of thought, you can probably imagine
many more potential uses for this technique.

14.6.2 Offscreen Images and Caching

To make image-replacement techniques viable, the animations or other special effects
need to be responsive. This means that we need some way to ensure that the necessary

 an image to be cached, we images are "pre-fetched" into the browser's cache. To force
first create an offscreen image using the constructor. Next, weImage() load an image

L (exactly as we would do for an into it by setting its src property to the desired UR
onscreen image). Later, when the same URL is used for an onscreen image, we kn

d over thcan be quickly loaded from the browser's cache, rather than slowly loade
age we create. In network. Note that we never actually do anything with the offscreen im

particular, we do not assign the offscreen Image object into the images[] a
document.

The image-rollover code fragment shown in the previous section did not pre-fetch the
rollover image it used, so the user will probably notice a delay in the rollover effect the

first time she moves the mouse over the image. To fix this problem, we could modify the

e rollover image.
ge,

lp.html"
mouseover="document.helpimage.src='images/help_rollover.gif';"

lp.gif';">
"80" height="20"

code as follows.

<script>
fetch th// Create an offscreen image and pre-

// Note that we don't bother saving a reference to the offscreen ima
// since there is nothing we can do with it later.
(new Image(80,20)).src = "images/help_rollover.gif";
</script>

f="he<a hre
on

 onmouseout="document.helpimage.src='images/he
ges/help.gif" width=<img name="helpimage" src="ima

border="0">
a> </

Example 14-3 shows code that performs a simple animation using image replacem
uses offscreen images to pre-fetch the frames of the animation. Note that in this ex

ent and
ample

t way to

e offscreen images to the src property of the onscreen

t a name for convenience. -

URL

eeps track of current

tion with

n. Call it once to start.
mage using its name attribute.

the

we retain the offscreen image objects we create, because they are a convenien
hold the URLs of the images that make up the animation. To perform the animation, we
assign the property of one of thsrc
image that is the subject of the animation.

Example 14-3. An animation using image replacement
<!-- The image that will be animated. Gi
->

ve i

<script>
// Create a bunch of offscreen images, and pre-fetch the "frames"
// of the animation into them so that they're cached when we need them
var aniframes = new Array(10);
for(var i = 0; i < 10; i++) {
 aniframes[i] = new Image(); // Create an
offscreen image
 aniframes[i].src = "images/" + i + ".gif"; // Tell it what
to load
}

var frame = 0; // The frame counter: k
frame
var timeout_id = null; // Allows us to stop the anima
clearTimeout()

// This function performs the animatio

reen i// Note that we refer to the onsc
function animate() {
 document.animation.src = aniframes[frame].src; // Display the
current frame
 frame = (frame + 1)%10;
frame counter

 // Update

 timeout_id = setTimeout("animate()", 250); // Display the
next frame later

}
</script>

<form> <!-- This form contains buttons to control the animation -->

input type="button" value="Start"
 onclick="if (timeout_id == null) animate();">

 <input type="button" value="Stop"
 clearTimeout(timeout_id);

eout_id=null;">

.6.3 Image Event Handlers

 <

 onclick="if (timeout_id)
tim
</form>

14

In Example 14-3, our animation does not begin until the user clicks the Start button,
ut

oon as
screen

 e Image() constructor, have an onload event
ndler that is invoked when the image is fully loaded.

Th we could modify Example 14-3

which allows plenty of time for our images to be loaded into the cache. But what abo
 sthe more common case in which we want to automatically begin an animation as

t turns out that images, whether created onall the necessary images are loaded? I
th an tag or offscreen with thwi

ha

e following code fragment shows how to use this

 be assigned as an HTML attribute. Instead,
 we create.

r aniframes = new Array(10); // Hold the offscreen animation frames.
r?

ages
e

ountImages() {

y

,

the image might finish loading (e.g., if it is already

we assign the handler, and then the handler would never be

te an

event handler to count the number of images that have loaded and automatically start the
f the animation when all the images have loaded. Since offscreen images are not part o

HTML document, the event handler cannot
we simply assign a function to the onload property of each Image object
When each image is loaded, the browser calls the function.

va
var num_loaded_images = 0; // How many have been loaded so fa

// This function is used as an event handler. It counts how many im
// have been loaded and, when all have been loaded, it starts th
animation.
function c
 if (++num_loaded_images == aniframes.length) animate();
}

// Create the offscreen images and assign the image URLs.
// Also assign an event handler to each image so we can track how man
images
// have been loaded. Note that we assign the handler before the URL
because
// otherwise
cached)
// before
triggered.
for(var i = 0; i < 10; i++) {
 aniframes[i] = new Image(); // Crea
offscreen image
 aniframes[i].onload = countImages; // Assign the event
handler

 aniframes[i].src = "images/" + i + ".gif"; // Tell it what URL
to load
}

In addition to the onload event handler, the Image object supports two others. T
error

he
 as

cified URL refers to corrupt image data. The onabort handler is invoked if

 property. This
e has

it. In other words, the complete
handlers is invoked.

The Image object has a few other properties as well. Most of them are simply mirror
attributes of the tag that created the image. The width , height, border, hspace,
and vspace properties are integers that specify the size of the image, the width of its
border, and the size of its horizontal and vertical margins. These properties are set by the
attributes of the tag that share their names. In Netscape 3 and 4, the properties are
read-only, but in IE 4 and later and Netscape 6 and later, you can also assign values to
these properties to dynamically change the size, border, or margins of the image.

The lowsrc property of the Image object mirrors the lowsrc attribute of the tag. It
specifies the URL of an optional image to display when the page is viewed on a low-
resolution device. The lowsrc property is a read/write string, like src, but unlike the src
property, setting lowsrc does not cause the browser to load and display the newly
specified, low-resolution image. If you want to perform an animation or some other
special effect that works with low-resolution images as well as high-resolution ones,

ussion of the

on event handler is invoked when an error occurs during image loading, such
when the spe
the user cancels the image load (for example, by clicking the Stop button in the browser)
before it has finished. For any image, one (and only one) of these handlers is called.

In addition to these handlers, each Image object also has a complete
property is false while the image is loading; it is changed to true once the imag
loaded or once the browser has stopped trying to load
property becomes true after one of the three possible event

14.6.4 Other Image Properties

always remember to update the lowsrc property before you set the src property. If the
browser is running on a low-resolution device when you set the src literal, it loads the
new lowsrc image instead.

14.6.5 Image-Replacement Example

Because image replacement is such a versatile technique, we'll end our disc
e object with an extended example. Imag Example 14-4 defines a ToggleButton class that

ulate a graphical checkbox. Because this class uses images
in old graphics used by the

uses image replacement to sim
that we provide, we can use bolder graphics than those pla
standard HTML Checkbox object. Figure 14-3 shows how these toggle-button graphics

uld appear on a web page. This is a complex, real-world example co and is worth studying
carefully.

Figure 14-3. ToggleButtons implemented with image replacement

Example 14-4. Implementing a ToggleButton with image replacement
<script language="JavaScript1.1">
// This is the constructor function for our new ToggleButton class.
// Calling it creates a ToggleButton object and outputs the required
// <a> and tags into the specified document at the current
location.
// Therefore, don't call it for the current document from an event
handler.
// Arguments:
// document: The Document object in which the buttons are to be
created.
// checked: A boolean that says whether the button is initially
checked.
// label: An optional string that specifies text to appear after
the button.
// onclick: An optional function to be called when the toggle
button is
// clicked. It is passed a boolean indicating the new
state of
// the button. You can also pass a string, which is

ed

ave

Second, we need to load the images we'll be using.
 // Doing this gets the images in the cache for when we need them.
 if (!ToggleButton.prototype.over) {
 // Initialize the prototype object to create our methods
 ToggleButton.prototype.over = _ToggleButton_over;
 ToggleButton.prototype.out = _ToggleButton_out;
 ToggleButton.prototype.click = _ToggleButton_click;

 // Now create an array of Image objects and assign URLs to
them.
 // The URLs of the images are configurable and are stored in an
 // array property of the constructor function itself. They are

converted
// to a function that is passed a boolean argument nam
"state".
function ToggleButton(document, checked, label, onclick)
{
 // The first time we are called (and only the first time), we h
 // to do some special stuff. First, now that the prototype object
 // is created, we can set up our methods.
 //

 // initialized below. Because of a bug in Netscape, we have
 // to maintain references to these images, so we store the
array
 // in a property of the constructor rather than using a local
variable.
 ToggleButton.images = new Array(4);
 for(var i = 0; i < 4; i++) {

= document;

op of us

he onclick argument to be called when the button is

If it is not already a function, attempt to convert it
 // to a function that is passed a single argument, named "state".
 this.onclick = onclick;

 // Now output the HTML code for this checkbox. Use <a> and
tags.
 // The event handlers we output here are confusing but crucial to
the
 // operation of this class. The "_tb" property is defined below, as
 // are the over(), out(), and click() methods.
 document.write(' <a href="about:blank" ' +
 'onmouseover="document.images[' + index + ']._tb.over();return
true;" '+
 'onmouseout="document.images[' + index + ']._tb.out()" '+
 'onclick="document.images[' + index + ']._tb.click(); return
false;">');
 document.write('<img src="' +
ToggleButton.imagenames[this.checked+0] +'"'+
 ' width=' + ToggleButton.width +
 ' height=' + ToggleButton.height +
 ' border="0" hspace="0" vspace="0"
align="absmiddle">');
 if (label) document.write(label);
 document.write('</br>');

 ToggleButton.images[i] = new Image(ToggleButton.width,
 ToggleButton.height);
 ToggleButton.images[i].src = ToggleButton.imagenames[i];
 }
 }

 // Save some of the arguments we were passed
 this.document
 this.checked = checked;

 // Remember that the mouse is not currently on t
 this.highlighted = false;

 // Save t
clicked.
 //

 if (typeof this.onclick == "string")
 this.onclick = new Function("state", this.onclick);

 // Figure out what entry in the document.images[] array the images
 // for this checkbox will be stored in
 var index = document.images.length;

 // Now that we've output the tag, save a reference to the
 // Image object that it created in the ToggleButton object
 this.image = document.images[index];

 // Also make a link in the other direction, from the Image object
 // to this ToggleButton o
property

bject. Do this by defining a "_tb"

// This becomes the over() method

tion _ToggleButton_over()

) method

he image, and call the
gleButton

 this.image.src =

n *before* any ToggleButtons are

Size of all

ript language="JavaScript1.1">
// Create ToggleButton objects and output the HTML that implements them

 // in the Image object.
 this.image._tb = this;
}

func
{
 // Change the image, and remember that we're highlighted
 this.image.src = ToggleButton.imagenames[this.checked + 2];
 this.highlighted = true;
}

// This becomes the out() method
function _ToggleButton_out()
{
 // Change the image, and remember that we're not highlighted
 this.image.src = ToggleButton.imagenames[this.checked + 0];
 this.highlighted = false;
}

// This becomes the click(
function _ToggleButton_click()
{
 // Toggle the state of the button, change t
 // onclick method, if it was specified for this Tog
 this.checked = !this.checked;

ToggleButton.imagenames[this.checked+this.highlighted*2];
 if (this.onclick) this.onclick(this.checked);
}

// Initialize static class properties that describe the checkbox
images. These
// are just defaults. Programs can override them by assigning new
values.

rridde// But they should be ove
created.
ToggleButton.imagenames = new Array(4); // Create an array
ToggleButton.imagenames[0] = "images/button0.gif"; // The unchecked
box
ggleButton.imagenames[1] = "images/button1.gif"; // The box with a To

checkmark
.gif"; // Unchecked but ToggleButton.imagenames[2] = "images/button2

highlighted
ToggleButton.imagenames[3] = "images/button3.gif"; // Checked and
highlighted
ToggleButton.width = ToggleButton.height = 25; //
images
</script>

<!-- Here's how we might use the ToggleButton class -->
tional extras:
 Op

<sc

// One button has no click handler, one has a function, and one has a
string
var tb1 = new ToggleButton(document, true, "56K Modem");
var tb2 = new ToggleButton(document, false, "Laser Printer",
 function(clicked) {alert("printer: " +
clicked);});
var tb3 = new ToggleButton(document, false, "Tape Backup Unit",
 "alert('Tape backup: ' + state)");
</script>

<!-- Here's how we can use the ToggleButton objects from event handlers
-->
<form>
<input type="button" value="Report Button States"
 onclick="alert(tb1.checked + '\n' + tb2.checked + '\n' +
tb3.checked)">
<input type="button" value="Reset Buttons"
 onclick="if (tb1.checked) tb1.click();
 if (tb2.checked) tb2.click();
 if (tb3.checked) tb3.click();">
</form>

The array of the Document object contains Link objects that represent each of
ded with the

he <a> tag. In JavaScript 1.1 and later, the <area> tag in a client-side
lso creates a Link object in the Document links[] array.

14.7 Links
links[]

the hypertext links in a document. Recall that HTML hypertext links are co
e of thref attribut

ap aimage m

The Link object represents the URL of the hypertext link and contains all the properties
that the Location object (introduced in Chapter 13) does. For example, the href property

bject contains the complete text of the URL to which it is linked, while the
hostname property contains only the hostname portion of that URL. See the client-side
reference section for a complete list of these URL-related properties.

Example 14-5

of a Link o

 shows a function that generates a list of all the links in a document. Note
the use of the Document write() and close() methods to dynamically generate a
document, as discussed earlier in this chapter.

Example 14-5. Listing the links in a document
/*
 * FILE: listlinks.js
 * List all links in the specified document in a new window
 */
function listlinks(d) {
 var newwin = window.open("", "linklist",

"menubar,scrollbars,resizable,width=600,height=300");

 for (var i = 0; i < d.links.length; i++) {
 newwin.document.write('')

 newwin.document.write(d.links[i].href);
 newwin.document.writeln("
");
 }
 newwin.document.close();
}

14.7.1 Links, Web Crawlers, and JavaScript Security

One obvious use of the Link object and the links[] array is to write a web-crawler
program. This program runs in one browser window or frame and reads web pages into
another window or frame (by setting the location property of the Window object). For
each page it reads in, it looks through the links[] array and recursively follows them. If
carefully written (so it doesn't get caught in infinite recursion or start going in circles),
such a program can be used, for example, to generate a list of all web pages that are
accessible from a given starting page. This list can be quite useful in web-site
maintenance.

om
he

neral security restrictions of
JavaScript, which prevent it from crawling very far beyond the site from which it was
loaded. (When the crawler loads a page from a different site, it appears as if that page
simply has no links on it.) See Chapter 21

Don't expect to crawl the entire Internet using these techniques, however. For security
reasons, JavaScript does not allow an unsigned script in one window or frame to read the
properties (such as document.links) of another window or frame unless both windows
are displaying documents that came from the same web server. This restriction prevents
important security breaches. Imagine that an employee at a large, security-conscious
company is browsing the Internet through a corporate firewall and is also using another
browser window to browse proprietary company information on the corporate intranet.
Without the security restriction we've described, an untrusted script from some rand
Internet site could snoop on what was going on in the other window. The authors of t
snooping script might not be able to glean much useful information from the links[]
array of the proprietary documents, but this would nevertheless be a serious breach of
security.

The web-crawler program we have described is not a threat to Internet security or
privacy, but unfortunately, it is still subject to the ge

 for a complete discussion of JavaScript
security, including a description of how to avoid this security restriction with signed
scripts.

14.7.2 Link Event Handlers

The Link object supports a number of interesting event handlers. We already saw the
onmouseover event handler in Section 13.3, where it was used with both <a> and <area>
tags to change the message in the browser's status line when the mouse moved over the
link. The onclick event handler is invoked when the user clicks on a hypertext link. In
JavaScript 1.1 and later, if this event handler returns false, the browser doesn't follow
the link as it would otherwise. As of JavaScript 1.1, both the <a> and <area> tags support

an
it

 onmouseout event handler. This is simply the opposite of the onmouseover handler --
 is run when the mouse pointer moves off a hypertext link.

The event-handling model has become much more general in JavaScript 1.2, and links
pport quite a few other event handlers. See Chapter 19su for details.

inally, it is worth mentioning that href and the other URL properties of the Link object
pt program that dynamically modifies the

estinations of hypertext links! Here is a frivolous piece of JavaScript-enhanced HTML
es a Link event handler to write to the href property and create a link whose

estination is randomly chosen from the set of other links in the document:

a href="about:"
 onmouseover="status = 'Take a chance... Click me.'; return true;"
 onclick="this.href =
 document.links[Math.floor(Math.random(
)*document.links.length)];"
>
Random Link

This example demonstrates all the features of the Link object that we've considered: the
links[] array, the use of Link event handlers, and the dynamic setting of the destination
of a link. Note that the example sets the href property of the link but doesn't bother to
read the href property of the link it randomly chooses. Instead, it relies on the
toString() method of the Link object to return the URL.

The anchors[] array of the Document object contains Anchor objects representing
named locations in the HTML document that are marked with the <a> tag and its name
attribute. The anchors[] array has existed since JavaScript 1.0, but the Anchor object is
new in JavaScript 1.2. In previous versions, the elements of the anchors[] array were all
undefined, and only the length property was useful.

The Anchor object is a simple one. The only standard property it defines is name, which
is the value of the HTML name attribute. As with the Link object, the text that appears
between the <a> and tags of the anchor is specified by the text property in
Netscape 4 and by the innerText property in Internet Explorer 4. Neither of these
properties is supported by the W3C DOM standard, but we'll see other ways to obtain the

F
are read/write. Thus, you can write a JavaScri
d
that us
d

<

14.8 Anchors

text content of an element in Chapter 17.

Example 14-6 shows a function that creates a navigation window for a specified
document. It displays the text, innerText, or name of all the anchors in the document.
The anchor text or name is displayed within hypertext links -- clicking on any anchor
causes the original window to scroll to display that anchor. The code in this example is

particularly useful if you write your HTML documents so that all section headings ar
enclosed in anchors. For example:

<h2>The Anchor Object</h2>

e

nt. Clicking on

 * anchor in the list causes the document to scroll to the position of
that
 * anchor. A document should not call this function on itself until it

.

"menubar=yes,scrollbars=yes,resizable=yes," +

eight=300");

 // Give it a title

ser-dependent property. If none, use the name instead.
 var a = d.anchors[i];

 if (a.text) text = a.text; // Netscape
4
 else if (a.innerText) text = a.innerText; // IE 4+
 if ((text == null) || (text == '')) text = a.name; // Default

 // Now output that text as a link. Note the use of the location
 // property of the original window.
 newwin.document.write('<a href="#' + a.name + '"' +
 ' onclick="opener.location.hash="' +
a.name +
 '"; return false;">');
 newwin.document.write(text);
 newwin.document.writeln('
');
 }
 newwin.document.close(); // Never forget to close the document!
}

Example 14-6. Listing all anchors
/*
 * FILE: listanchors.js
 * The function listanchors() is passed a document as its argument
and opens
 * a new window to serve as a "navigation window" for that document.
The new
 * window displays a list of all anchors in the docume
any

is
 * fully parsed, or at least until all the anchors in it are parsed
 */
function listanchors(d) {
 // Open the new window
 var newwin = window.open("", "navwin",

 "width=600,h

 newwin.document.writeln("<h1>Navigation Window:
" +
 document.title + "</h1>");
 // List all anchors
 for(var i = 0; i < d.anchors.length; i++) {
 // For each anchor object, determine the text to display.
 // First, try to get the text between <a> and using a
 // brow

 var text = null;

14.9 Applets
The applets[] array of the Document object contains objects that represent the applets
embedded in the document with the <applet> or <object> tag. An applet is a portable,
secure Java program that is loaded over the Internet and executed by the web browser;
both Netscape and Internet Explorer support Java (although IE 6 no longer includes Java
support by default).

As of Netscape 3 and Internet Explorer 3, both browsers allow JavaScript to invoke
public methods and read and write the public properties of Java applets. (As we'll see in
Chapter 22, Netscape also supports much richer bidirectional interactions between
JavaScript and Java.) All applets have a few standard public methods that they inherit
from their superclasses, but the most interesting methods and properties vary on a case-
by-case basis. If you are the author of the applet that you want to control from JavaScript,
you already know what public methods and properties it defines. If you are not the
author, you should consult the applet's documentation to determine what you can do with

handlers:

<form>
<input type="button" value="Start" onclick="document.animation.start(
);">

All applets define start() and stop() methods. In this hypothetical example, the
methods cause an animation to start and stop; by defining the HTML form, we've given
the user control over starting and stopping the applet. Note that we've used the name
attribute of the <applet> tag, so we can refer to the applet by name, rather than as a
numbered element of the applets[] array.

This example does not fully demonstrate the power of JavaScript to script Java applets:
the Java methods invoked from the JavaScript event handlers are passed no arguments
and return no values. In fact, JavaScript can pass numbers, strings, and boolean values as
arguments to Java metho oolean return values
from those functions. (As we'

it.

Here's how you might embed a Java applet in a web page with the <applet> tag and then
invoke the start() and stop() methods of that applet from JavaScript event

<applet name="animation" code="Animation.class" width="500"
height="200">
</applet>

<input type="button" value="Stop" onclick="document.animation.stop(
);">
</form>

ds and can accept numbers, strings, and b
ll see in Chapter 22, Netscape can also pass and return

JavaScript and Java objects to and from Java methods.) The automatic conversion of data
between JavaScript and Java allows for rich interactions between the two programming
environments. For example, an applet might implement a method that returns a string of
JavaScript code. JavaScript could then use the eval() method to evaluate that code.

Applets can also implement methods that don't operate on the applet itself, but instead
simply serve as conduits between JavaScript and the Java environment. For instance, an
applet might define a method that invokes the System.getProperty() method for a
given string argument. This applet would allow JavaScript to look up the value of Java
system properties and determine, for example, the version of Java that is supported by the
browser.

14.10 Embedded Data
The embeds[] array contains objects that represent data (other than applets) embedded in
the document with the <embed> or <object> tag. Embedded data can take many forms
(audio, video, spreadsheets, etc.). The browser must have an appropriate viewer installed
or available so that it can display the data to the user. In Netscape, special modules
known as plugins are responsible for displaying embedded data. In Internet Explorer,
embedded data is displayed by ActiveX controls. Both plugins and ActiveX controls can
be automatically downloaded from the network and installed as needed.

While the elements of the applets[] array all represent Java applets, the elements of the
embeds[] array tend to be more diverse, and few generalizations can be made about
them. The properties and methods of these objects depend upon the particular plugin or
ActiveX control that is used to display the embedded data. You should consult the
vendor-specific documentation for the plugin or ActiveX control you are using. If it
supports any kind of scripting from JavaScript, the documentation should say so, and it
should describe the properties and methods that you can use from JavaScript. For
example, the documentation for the LiveVideo plugin from Netscape says that the
LiveVideo object in the embeds[] array supports four methods: play(), stop(),
rewind(), and seek(). With this information, you can write simple scripts that control
how the plugin displays a movie you have embedded on a web page. Note that while
some vendors may produce plugins (for Netscape) and ActiveX controls (for IE) that
define the same public API, this is not always the case, and scripting embedded objects
usually involves platform-specific JavaScript code.

Chap s and F
Elements
As we've seen in examples throughout thi use
almost all JavaScript programs. This chapter explains th programming with
forms in JavaScript. It is assumed that you are already so
creation of H s and with the inp ents tha
want to refer to a good book on HTML.[1]

ter 15. Form orm

s book, the of HTML forms is basic to
e details of
mewhat familiar with the
t they contain. If not, you may TML form ut elem

 ent-side
lists the HTML syntax along with the JavaScript syntax m elements; you
may find these useful for quick reference.

[1] Such as HTML: T usciano and Bill Kennedy (O'Reilly

If you are already familiar with server-side programmin ay
find that things are done differently when forms are used with JavaScript. In the server-
side model, a it contains is subm
once. The emphasis is on processing a complete batch o
producing a new web page in response. With JavaScript
different. In phasis is not on form submission and processing
but instead on event handling. A form and all input elem
that JavaScript can use to respond to user interactions w
on a checkbox, for example, a JavaScript program can re
event handler and m e value
of the form.

With server- L form isn't useful u
unless it has only a single ield and allows the as a
shortcut for subm Submit button is never
necessary (unless the JavaScript program is working wit
program, of cript, a form can have any number of push buttons with
event handle number of actions when clicked. In previous chapters,

The cli reference section of this book
for forms and for

he Definitive Guide, by Chuck M).

g using HTML forms, you m

itted to the web server all at
f input data and dynamically

 form with the input data

, the programming model is quite
JavaScript programs, the em

ents in it have event handlers
ithin the form. If the user clicks
ceive notification through an

displayed in some other element ight respond by changing th

side programs, an HTM
text input f

nless it has a Submit button (or
 user to press the Return key

ission). With JavaScript, on the other hand, a

course). With JavaS
rs that perform any

h a cooperating server-side

we've seen some of the possible actions that such buttons can trigger: replacing one
image with another, using lay a new web page,
opening a new browser window, and dynamically generating a new HTML document in
an ndow or f in hapter, a
can even trigger a form itted.

As we've see t this book, event h a
central element of any interesting JavaScript program. A
event handlers (excluding the event handlers of the Link
forms or form his chapter introduces the Jav object and the
various JavaScript objects that represent form elements. It concludes with an example
that illustrates how you can use JavaScript to validate user input on the client before

ar

ts of the form.
cument. So

ent

nce. The action ,
 properties correspond directly to the action, encoding,

es of the <form> tag. These properties and attributes are all

 they are therefore useful only when the form is actually submitted to a server-
r

 the location property to load and disp

other wi rame. As we'll see later
 to be subm

 this c JavaScript event handler

n in examples throughou andlers are lmost always the
nd the most commonly used
 object) are those used with
aScript Form elements. T

submitting it to a server-side program running on the web server.

15.1 The Form Object
The JavaScript Form object represents an HTML form. Forms are always found as
elements of the forms[] array, which is a property of the Document object. Forms appe
in this array in the order in which they appear within the document. Thus,
document.forms[0] refers to the first form in a document. You can refer to the last form
in a document with the following:

document.forms[document.forms.length-1]

The most interesting property of the Form object is the elements[] array, which contains
JavaScript objects (of various types) that represent the various input elemen
Again, elements appear in this array in the same order they appear in the do
you can refer to the third element of the second form in the document of the curr
window like this:

document.forms[1].elements[2]

The remaining properties of the Form object are of less importa
, method, and targetencoding

method, and target attribut
used to control how form data is submitted to the web server and where the results are
displayed;
side program. See the client-side reference section for an explanation of the properties, o
see a book on HTML or CGI programming[2] for a thorough discussion of the attributes.
What is worth noting here is that these Form properties are all rea
JavaScript program can dynamically set their values in order to change the way the form

d/write strings, so a

is submitted.

[2] Such as CGI Programming on the World Wide Web, by Shishir Gundavaram (O'Reilly).

In the days before JavaScript, a form was submitted with a special-purpose Submit
ecial-purpose Reset button. The
) and (as of JavaScript 1.1)

reset() e. Invoking the submit() method of a Form
 resets the form elements.

t provides the
avaScript 1.1) the onreset

d just before the form

 avoid

it
ine click on a Submit button. Calling the submit()
the onsubmit handler.

Th event handler is similar to the handler. It is invoked just before

false. This allows a JavaScript program to ask for confirmation of the reset, which can
be a good idea when the form is long or detailed. You might request this sort of
confirmation with an event handler like the following:

<form...
 onreset="return confirm('Really erase ALL data and start over?')"
>

Like the onsubmit handler, onreset is triggered only by a genuine Reset button. Calling
) method of a form does not trigger onreset.

ects with which we create graphical user
interfaces for our JavaScript programs. Figure 15-1

button, and form elements had their values reset with a sp
JavaScript Form object supports two methods, submit(

, that serve the same purpos
submits the form, and invoking reset()

To accompany the submit() and reset() methods, the Form objec
onsubmit event handler to detect form submission and (as of J
event handler to detect form resets. The onsubmit handler is invoke
is submitted; it can cancel the submission by returning false. This provides an

 to check the user's input for errors in order toopportunity for a JavaScript program
submitting incomplete or invalid data over the network to a server-side program. We'll
see an example of such error checking at the end of this chapter. Note that the onsubm
handler is triggered only by a genu

form does not trigger method of a

e onreset onsubmit
the form is reset, and it can prevent the form elements from being reset by returning

the reset(

15.2 Defining Form Elements
HTML form elements are the primitive obj

 shows a complex form that contains
at least one of each of the basic form elements. In case you are not already familiar with

each type of HTML form elements, the figure includes a numbered key identifying
ample 15-1element. We'll conclude this section with an example (Ex) that shows the

5-1HTML and JavaScript code used to create the form pictured in Figure 1 and to hook
up event handlers to each of the form elements.

Figure 15-1. HTML form elements

Table 15-1 lists the types of form elements that are availa
ipt programmers. The first column of the table nam

ble to HTML designers and
es the type of form element,

s
en, each Form object has an elements[] array that contains the objects that

m another. By examining the type property of
an unknown form element, JavaScript code can determine the type of the element and

this done in Example 15-2

JavaScr
the second column shows the HTML tags that are used to define elements of that type,

 third column lists the value of the type property for each type of element. Aand the
've sewe

represent the form's elements. Each of these elements has a type property that can be
used to distinguish one type of element fro

figure out what it can do with that element. (We'll see , at the
ble provides a short description of

each element and also lists the most important or most commonly used event handler for

the
various types of elements are available in the client-side reference section, under the
name listed in the first column of Table 15-1

end of the chapter.) Finally, the fourth column of the ta

that element type.

We'll talk more about form elements later in this chapter. Complete details about

. Although each type of form element has a
separate reference page, note that most of the elements are created with HTML <input>
tags and are, in fact, all Input objects. The client-side reference page named "Input" lists
the features that all these elements have in common, and the type-specific pages provide
specific details about working with a particular type of form element. Note that the names
Button, Checkbox, and so on from the first column of the table may not correspond to
any actual object in a client-side JavaScript implementation, and note also that the DOM

standard does not define any interfaces with these names. Still, each type of form element
has a distinct appearance and distinct behavior, and it is useful to treat them as separate
types, at least for the purposes of the client-side reference section. In the DOM reference
section you can find material about forms and their elements under the names

"HTMLFormElement," "HTMLInputElement," "HTMLTextAreaElement,"
"HTMLSelectElement," and "HTMLOptionElement."

Table 15-1. HTML form elements

Object HTML tag type
property Description and events

Button
"button">

or <button "button" A push button; onclick.
<input type=

type="button">

Checkbox <input
type="checkbox"> "checkbox" A toggle button without radio-

button behavior; onclick.

FileUpload <input type="file"> "file"
An input field for entering the
name of a file to upload to the
web server; onchange.

Hidden <input type="hidden"> "hidden" not visible to the user; no event
handlers.

Data submitted with the form but

Option <option> none

A single item within a Select
object; event handlers are on the
Select object, not on individu
Option objects.

al

Password <input
type="password"> "password"

An input field for password
entry -- typed characters are not

visible; onchange.

Radio <input type="radio"> "radio"
tton with radio-

button behavior -- only one
selected at a time; onclick.

A toggle bu

Reset <input type="reset"> or "reset" A push button that resets a form;
<button type="reset"> onclick.

Select <select> "select-one"

A list or drop-down menu fro
which one item may be selec

m
ted;

onchange. (See also Option
object.)

Select <select multiple> "select-
multiple"

A list from which multiple items
may be selected;

 onchange. (See

also Option object.)

Submit or "submit" its a
form; onclick.

<input type="submit"> A push button that subm
<button

type="submit">

Table 15-1. HTML form elements

Object HTML tag type
property Description and events

Text <input type="text"> "text" A single-line text entry field;
onchange.

Textarea <textarea> "textarea" A multiline text entry field;
onchange.

Now th
used to

at we've taken a look at the various types of form element and the HTML tags
 create them, Example 15-1 shows the HTML code used to create the form shown

in Figure 15-1. Although the example consists primarily of HTML, it also contains
JavaScript code used to define event handlers for each of the form elements. You'll notice

 event handlers are not defined as HTML attributes. Instead, they are JavaScript
ns assigned to the properties of the objects in the form's elements[] array. The

event h he
various form elem
know to understand what the report() function is doing.

ple 15-1. An HTML form containing all form elements
<form name="everything"> <!-- A one-of-everything
HTML form... -->
 <table border="border" cellpadding="5"> <!-- in a big HTML table -->
 <tr>
 <td>Username:
[1]<input type="text" name="username"
size="15"></td>
 <td>Password:
[2]<input type="password" name="password"
size="15"></td>
 <td rowspan="4">Input Events[3]

 <textarea name="textarea" rows="20" cols="28"></textarea></td>
 <td rowspan="4" align="center" valign="center">
 [9]<input type="button" value="Clear" name="clearbutton">

 [10]<input type="submit" name="submitbutton" value="Submit">

 [11]<input type="reset" name="resetbutton"
value="Reset"></td></tr>
 <tr>
 <td colspan="2">
 Filename: [4]<input type="file" name="file" size="15"></td></tr>
 <tr>
 <td>My Computer Peripherals:

 [5]<input type="checkbox" name="peripherals" value="modem">56K

ue="tape">Tape
Backup</td>
 <td>My Web Browser:

 [6]<input type="radio" name="browser" value="nn">Netscape

that the
functio

andlers all call the function report(), which contains code that works with t
ents. The next section of this chapter explains everything you need to

Exam

Modem

 [5]<input type="checkbox" name="peripherals"
value="printer">Printer

 [5]<input type="checkbox" name="peripherals" val

 [6]
Explorer<

<input type="radio" name="browser" value="ie">Internet
br>

value=
 <tr
 <td>My Hobbies:[7]

 <select multiple="multiple" name="hobbies" size="4">

ption value="programming">Hacking JavaScript
option value="surfing">Surfing the Web

 <option value="caffeine">Drinking Coffee

 <

 </table>
</form>

="center"> <!-- Another table--the key to the one
above -->
 <table border="4" bgcolor="pink" cellspacing="1" cellpadding="4">
 <tr>
 <td align="center">Form Elements</td>

d>[4] FileUpload</td> <td>[5] Checkbox</td></tr>

 <td>[6] Radio</td> <td>[7] Select (list)</td>
 <td>[8] Select (menu)</td> <td>[9] Button</td>
 <td>[10] Submit</td> <td>[11] Reset</td></tr>
 </table>
</div>

<script>
// This generic function appends details of an event to the big
Textarea
// element in the form above. It is called from various event handlers.
function report(element, event) {
 var elmtname = element.name;
 if ((element.type == "select-one") || (element.type == "select-
multiple")){
 value = " ";
 for(var i = 0; i < element.options.length; i++)
 if (element.options[i].selected)
 value += element.options[i].value + " ";
 }
 else if (element.type == "textarea") value = "...";
 else value = element.value;
 var msg = event + ": " + elmtname + ' (' + value + ')\n';
 var t = element.form.textarea;
 t.value = t.value + msg;
}

// This function adds a bunch of event handlers to every element in a
form.

 [6]<input type="radio" name="browser"
"other">Other</td></tr>
>

 <o
 <

 <option value="annoying">Annoying my Friends
 </select></td>
td align="center" valign="center">My Favorite Color:
[8]
 <select name="color">
 <option value="red">Red <option value="green">Green
 <option value="blue">Blue <option value="white">White
 <option value="violet">Violet <option value="peach">Peach
 </select></td></tr>

<div align

 <td>[1] Text</td> <td>[2] Password</td> <td>[3] Textarea</td>
 <t
 <tr>

// It doesn't bother checking to see if the element supports the event
handler,
// it just adds them all. Note that the event handlers call report()
above.
// Note that we're defining event handlers by assigning functions to
the
// properties of JavaScript objects rather than by assigning strings to
// the attributes of HTML elements.
function addhandlers(f) {
 // Loop through all the elements in the form
 for(var i = 0; i < f.elements.length; i++) {
 var e = f.elements[i];
 e.onclick = function() { report(this, 'Click'); }
 e.onchange = function() { report(this, 'Change'); }
 e.onfocus = function() { report(this, 'Focus'); }
 e.onblur = function() { report(this, 'Blur'); }
 e.onselect = function() { report(this, 'Select'); }
 }

 // Define some special-case event handlers for the three buttons:
 f.clearbutton.onclick = function() {
 this.form.textarea.value=''; report(this,'Click');
 }
 f.submitbutton.onclick = function () {
 report(this, 'Click'); return false;
 }
 f.resetbutton.onclick = function() {
 this.form.reset(); report(this, 'Click'); return false;
 }
}
// Finally, activate our form by adding all possible event handlers!

Every form element has a name attribute that must be set in its HTML tag if the form is to
be submitted to a server-side program. While form submission is not generally of interest

g

,

addhandlers(document.everything);
</script>

15.3 Scripting Form Elements
The previous section listed the form elements provided by HTML and explained how to
embed these elements in your HTML documents. This section takes the next step and
shows you how you can work with those elements in your JavaScript programs.

15.3.1 Naming Forms and Form Elements

to JavaScript programs, there is another useful reason to specify this name attribute, as
you'll see shortly.

The <form> tag itself also has a name attribute that you can set. This attribute has nothin
to do with form submission. It exists for the convenience of JavaScript programmers. If
the name attribute is defined in a <form> tag, when the Form object is created for that
form, it is stored as an element in the forms[] array of the Document object, as usual
and it is also stored in its own personal property of the Document object. The name of

this newly defined property is the value of the name attribute. In Example 15-1, for
instance, we defined a form with a tag like this:

<form name="everything">

This allowed us to refer to the Form object as:

document.everything

Often, you'll find this more convenient than the array notation:

document.forms[0]

Furthermore, using a form name makes your code position-independent: it works even if
the document is rearranged so that forms appear in a different order.

, <applet>, and other HTML tags also have name attributes that work the same as
the name attribute of <form>. With forms, however, this style of naming goes a step
further, because all elements contained within a form also have name attributes. When
you give a form element a name, you create a new property of the Form object that refers

With reasonably chosen names, this syntax is much more elegant than the alternative,
which relies on hardcoded (and position-dependent) array indices:

document.forms[1].elements[4]

In order for a group of Radio elements in an HTML form to exhibit mutually exclusive
"radio-button" behavior, they must all be given the same name. In Example 15-1

to that element. The name of this property is the value of the attribute. Thus, you can
refer to an element named "zipcode" in a form named "address" as:

document.address.zipcode

, for
instance, we define three Radio elements that all have a name attribute of "browser".
Although it is not strictly necessary, it is also common practice to define related groups of
Checkbox elements with the same name attribute. Sharing a name attribute like this works
naturally for server-side programming, but it is a little awkward on the client side. The
solution is straightforward, though: when more than one element in a form has the same
name attribute, JavaScript simply places those elements into an array with the specified
name. The elements of the array are in the same order as they appear in the document. So,
the Radio objects in Example 15-1 can be referred to as:

document.everything.browser[0]

document.everything.browser[1]
document.everything.browser[2]

15.3.2 Form Element Properties

All (or most) form elements have the following properties in common. Some elements
have other special-purpose properties that are described later, when we consider the
various types of form elements individually.

type

A read-only string that identifies the type of the form element. The third column
of Table 15-1 lists the value of this property for each form element.

form

A read/write string that specifies the "value" contained or represented by the form
element. This is the string that is sent to the web server when the form is
submitted, and it is only sometimes of interest to JavaScript programs. For Text
and Textarea elements, this property contains the text that the user entered. For
Button elements, this property specifies the text displayed within the button,
which is something that you might occasionally want to change from a script. For
Radio and Checkbox elements, however, the value property is not edited or
displayed to the user in any way. It is simply a string set by the HTML value
attribute that is passed to the web server when the form is submitted. We'll discuss
the value property when we consider the different categories of form elements
later in this chapter.

15.3.3 Form Element Event Handlers

Most form elements support most of the following event handlers:

A read-only reference to the Form object in which this element is contained.

name

A read-only string specified by the HTML name attribute.

value

onclick

Triggered when the user clicks the mouse on the element. This handler is
particularly useful for Button and related form elements.

onchange

Triggered when the user changes the value represented by the element by entering
text or selecting an option, for example. Button and related elements typically do
not support this event handler because they do not have an editable value. Note
that this handler is not triggered every time the user types a key in a text field, for
example. It is triggered only when the user changes the value of an element and
then moves the input focus to some other form element. That is, the invocation of
this event handler indicates a completed change.

onfocus

Triggered when the form element receives the input focus.

onblur

Triggered when the form element loses the input focus.

Example 15-1 shows how you can define these event handlers for form elements. The
example is designed to report events as they occur by listing them in a large Textarea

 the
e

ining form,
the even element can always refer to the Form object as this.form.

ent can refer to a

N is section are the ones that have
particular significance for form elements. Form elements also support the various event

 See

element. This makes the example a useful way to experiment with form elements and
vent handlers they trigger.

An important thing to know about event handlers is that within the code of an event
handler, the this keyword always refers to the document element that triggered the
event. Since all form elements have a form property that refers to the conta

t handlers of a form
Going a step further, this means that an event handler for one form elem
sibling form element named x as this.form.x.

ote that the four form element event handlers listed in th

handlers (such as onmousedown) that are supported by (nearly) all HTML elements.
Chapter 19 for a full discussion of events and event handlers.

15.3.4 Buttons

 clear

a can set this property
to change the text (plain text only, not HTML) that appears in the button, which can

e triggered by the onclick handler can be conceptualized as
"following a link."

re
m object itself.

In HTML 4, you can create Button, Submit, and Reset buttons with the <button> tag
instead of the traditional <input> tag. <button> is more flexible, because instead of
simply displaying the plain text specified by the value attribute, it displays any HTML
content (formatted text and/or images) that appears between <button> and </button>.
The Button objects created by a <button> tag are technically different from those created
by an <input> tag, but they have the same value for the type field and otherwise behave
quite similarly. The main difference is that because the <button> tag doesn't use its
value attribute to define the appearance of the button, you can't change that appearance
by setting the value property. In this book, we use the terms Button, Submit, and Reset
to refer to objects created with either <input> or <button>.

ll of which have the same value for the HTML name attribute. Radio
elements created in this way are mutually exclusive -- when you check one, the one that
was previously checked becomes unchecked. Checkboxes are also often used in groups
that share a name attribute, and when you refer to these elements by name, you must
remember that the object you refer to by name is an array of same-named elements. In

The Button form element is one of the most commonly used, because it p
sual way to allow the user to trigger some scripted action. The Button object has no

rovides a
vi
default behavior of its own, and it is never useful in a form unless it has an (or onclick

rols the text that other) event handler. The value property of a Button element cont
ppears within the button itself. In fourth-generation browsers, you

occasionally be a useful thing to do.

Note that hyperlinks provide the same onclick event handler that buttons do, and any
button object can be replaced with a link that does the same thing when clicked. Use a
button when you want an element that looks like a graphical push button. Use a link
when the action to b

Submit and Reset elements are just like Button elements, but they have default actions
(submitting and resetting a form) associated with them. Because these elements have
default actions, they can be useful even without an onclick event handler. On the other
hand, because of their default actions, they are more useful for forms that are submitted
to a web server than for pure client-side JavaScript programs. If the onclick event
handler returns false, the default action of these buttons is not performed. You can use
the onclick handler of a Submit element to perform form validation, but it is mo
common to do this with the onsubmit handler of the For

15.3.5 Toggle Buttons

The Checkbox and Radio elements are toggle buttons, or buttons that have two visually
distinct states: they can be checked or unchecked. The user can change the state of a
toggle button by clicking on it. Radio elements are designed to be used in groups of
related elements, a

Example 15-1, we saw three Checkbox objects with the name "peripherals". In this
example, we can refer to an array of these three Checkbox objects as:

document.everything.peripherals

To refer to an individual Checkbox element, we must index the array:

document.everything.peripherals[0] // First form element named
"peripherals"

Radio and Checkbox elements both define a checked property. This read/write boolean
value specifies whether the element is currently checked. The defaultChecked property
is a read-only boolean that has the value of the HTML checked attribute; it specifies
whether the element was checked when the page was first loaded.

lter

pearance of the element, as it does for Button elements. You can set value,
but this changes only form is submitted.

e Radio or Checkbox element triggers its
nclick event handler to notify the JavaScript program of the change of state. Newer

 these elements. Both event handlers
 handler is more portable.

15.3.6 Text Fields

The Text element is probably the most commonly used element in HTML forms and
JavaScript programs. It allows the user to enter a short, single-line string of text. The
value property represents the text the user has entered. You can set this property to
specify explicitly the text that should be displayed in the field. The onchange event
handler is triggered when the user enters new text or edits existing text and then indicates
that he is finished editing by moving input focus out of the text field.

The Textarea element is just like the Text element, except that it allows the user to input
(and your JavaScript programs to display) multiline text. Textarea elements are created
with a <textarea> tag using a syntax significantly different from the <input> tag used

evertheless, the two types of element behave quite similarly,
ered to inherit from HTMLInputElement, even though it

Radio and Checkbox elements do not display any text themselves and are typically
displayed with adjacent HTML text (or, in HTML 4, with an associated <label> tag.)
This means that setting the value property of a Checkbox or Radio element does not a
the visual ap

 the string that is sent to the web server when the

When the user clicks on a toggle button, th
o
web browsers also trigger the onchange handler for

 the onclickconvey the same essential information, but

to create a Text element. N
d Textarea can be considan

technically does not. You can use the property and event handler of a value onchange
Textarea element just as you would for a Text element.

The Password element is a modified Text element that displays asterisks as the user types

alue

cape 4), the value property may be
visual appearance of the form element.

 when the
mitted over a

er the network.

Finally, the FileUpload object is designed to allow the user to enter the name of a file to
is essentially a Text element combined with a built-in

p a file-chooser dialog box. FileUpload has an onchange event handler,
like the Text element. Unlike Text, however, the value property of FileUpload is read-

s , onkeydown,

that actually accept keyboard input. You may return false from the on
d. This can
ee

n these
all HTML elements.

ect and Option Elements

from
n menus

or list boxes. The Select element can o value of
elect> tag has the multiple

, only

In some ways, a "select-multiple" element is like a set of Checkbox elements, and a
"select-one" element is like a set of Radio elements. The Select element differs from the

ggle-button elements in that a single Select element represents an entire set of options.
HTML with the tag, and they are represented in

nt.
es, it does not have a value property,

into it. As the name indicates, this is useful to allow the user to enter passwords without
worrying about others reading over their shoulders. Password triggers its onchange event
handler just as Text does, but there are some restrictions (or bugs) on the use of its v
property. Some old browsers (such as Netscape 3) implement an ineffective security
measure that prevents JavaScript from reading the value the user has entered into a
Password element. In other browsers (such as Nets

ange to the set, but setting it does not cause any ch
Note that the Password element protects the user's input from prying eyes, but
form is submitted, that input is not encrypted in any way (unless it is sub
secure HTTPS connection), and it may be visible as it is transmitted ov

be uploaded to the web server. It
button that pops u

only. This prevents malicious JavaScript programs from tricking the user into uploading a
file that should not be shared.

Netscape 4 and later and Internet Explorer 4 and later define onkeypres
and onkeyup event handlers (note, however, that they are not yet part of the DOM
standard). These handlers can be specified for any Document object, but they are most
useful (and, in Netscape 4, only useful) when specified on Text and related form elements

keypress or
onkeydown event handlers to prevent the user's keystroke from being recorde

r to enter only digits. Sbe useful, for example, when you want to force the use
"HTMLElement" in the client-side and DOM reference sections for more details o
and other event handlers that are supported by

15.3.7 Sel

The Select element represents a set of options (represented by Option elements)
wwhich the user can select. Browsers typically render Select elements in drop-do

perate in two very distinct ways, and the
the type property depends on how it is configured. If the <s
attribute, the user is allowed to select multiple options, and the type property of the
Select object is "select-multiple". Otherwise, if the multiple attribute is not present
a single item may be selected, and the type property is "select-one".

to
These options are specified in <option>
JavaScript by Option objects stored in the ns[] array of the Select elemeoptio

 of choicBecause a Select element represents a set

as all other form elements do. Instead, as we'll discuss shortly, each Option object
 element defines a value property.

r selects or deselects an option, the Select element triggers its onchange
event handler. For "select-one" Select elements, the read/write property

plete
ust

In addition to its selected property, the Option element has a text property that

o change the text that is displayed to the user. The value property is
to be sent to the web server when the form

t-side program and your form never gets
ing HTML value attribute) can be a

useful place to store any data that you'll need if the user selects a particular option. Note
t define form-related event handlers; use the onchange

ler of the containing Select element instead.

are other ways you can
ment. You can truncate the array

f options, and you
ose we have a

 named "address". We can remove all options
from the element like this:

document.address.country.options.length = 0; // Remove all options

e can remove an individual Option object from the Select element by setting its spot in
the options[] array to null. This deletes the Option object, and any higher elements in

e options[] array automatically get moved down to fill the empty spot:

// Remove a single Option object from the Select element
// The Option that was previously at options[11] gets moved to
options[10]...

n
lements, and you can append

new options to a Select element by assigning them to the end of the options[] array. For
example:

// Create a new Option object

contained by the Select

When the use
selectedIndex

specifies by number which one of the options is currently selected. For "select-multiple"
elements, the single selectedIndex property is not sufficient to represent the com

 mset of selected options. In this case, to determine which options are selected you
loop through the elements of the array and check the value of the options[] selected
property for each Option object.

specifies the string of plain text that appears in the Select element for that option. You
can set this property t
also a read/write string that specifies the text
is submitted. Even if you are writing a pure clien

ty (or its correspondsubmitted, the value proper

that
and

 the Option element does no
h

In addition to setting the text property of Option objects, there
dynamically change the options displayed in a Select ele
of Option elements by setting options.length to the desired number o

ts by setting options.length to zero. Suppcan remove all Option objec
ct named "country" in a formSelect obje

W

th

document.address.country.options[10] = null;

Finally, the Option element defines an Option() constructor that you can use (i
JavaScript 1.1 and later) to dynamically create new Option e

var zaire = new Option("Zaire", // The text property
 "zaire", // The value property
 false, // The defaultSelected property
 false); // The selected property

// Display it in a Select element by appending it to the options array:
var countries = document.address.country; // Get the Select object
countries.options[countries.options.length] = zaire;

In HTML 4, you can use the <optgroup> tag to group related options within a Select
element. The <optgroup> tag has a label attribute that specifies text to appear in the
Select element. Despite its visual presence, however, an <optgroup> tag is not selectable
by the user, and HTMLOptGroupElement objects never appear in the options[] array of
the Select element.

15.3.8 Hidden Elements

As its name implies, the Hidden element has no visual representation in a form. It exists
to allow arbitrary text to be transmitted to the server when a form is submitted. Server-
side programs use this as a way to save state information that is passed back to them with
form submission. Since they have no visual appearance, Hidden elements cannot generate
events and have no event handlers. The value property allows to you read and write the
text associated with a Hidden element, but, in general, Hidden elements are not
commonly used in client-side JavaScript programming.

15.3.9 Fieldset Elements

The HTML 4 standard adds new <fieldset> and <label> tags to the set of elements
that can appear within a form. In IE 5 and later, placing a <fieldset> in a form causes a
corresponding object to be added to the form's elements[] array. Fieldset elements are
not scriptable in interesting ways like other form elements are, and their objects do not
have a type property like other form elements do. Therefore, the presence of Fieldset
objects in the elements[] array seems like a mistaken design decision. This is
particularly true since <label> tags do not cause corresponding objects to be added to the
elements[] array. The Mozilla and Netscape 6 browsers have chosen to follow
Microsoft's lead on this in order to be compatible with IE.

What this means is that if you define a form that contains fieldsets, the contents of the
elements[] array differ in recent, HTML 4-capable browsers and in older, pre-HTML 4
browsers. In this situation, using position-based numeric indexes in the elements[] array
is not portable, and you should define name attributes for all your form elements and refer
to them by name.

15.4 Form Verification Example

We'll close our discussion of forms with an extended example that demonstrates several
of the concepts we've been discussing. Example 15-2 shows how you might use the
onsubmit event handler of the Form object to perform input validation so that you can
notify the user and prevent the form from being submitted when it contains missing or
invalid data. After studying this example, you may want to turn back to Example 1-3, the
form-programming example we began this book with. The code of that example probably
makes more sense now that you are a JavaScript expert!

Example 15-2 defines a verify() function suitable for use as a generic form validator.
It checks for required fields that are empty. In addition, it can check that a numeric value
is in fact numeric and also falls within a specified numeric range. This verify()
function relies on the type property of a form element to determine which kind of
element it is. The function also relies on additional user-defined properties to distinguish
optional fields from required fields and to specify the allowed ranges for numeric fields.
Note how the function reads the value property of an input field and uses the name
property of a field when reporting errors.

Figure 15-2 shows an example form that uses this verification scheme, with the error
message that is displayed when the user attempts to submit the form before correctly
filling it in.

Figure 15-2. A form that failed validation

Example 15-2. Performing form validation
<script language="JavaScript1.1">
// A utility function that returns true if a string contains only
/ whitespace characters
function isblank(s) {

i = 0; i < s.length; i++) {
c = s.charAt(i);

 return true;

/

 for(var
 var
 if ((c != ' ') && (c != '\n') && (c != ' ')) return false;
 }

}

// This is the function that performs form verification. It is invoked
// from the onsubmit event handler. The handler should return whatever
// value this function returns.
function verify(f) {
 var msg;
 var empty_fields = "";
 var errors = "";

 // Loop through the elements of the form, looking for all Text and
 // Textarea elements that don't have an "optional" property
defined.

lds that are empty and make a list of them.

 // any of these elements have a "min" or a "max" property defined,
verify

ent

 // its range. Put together error messages for fields that are

 var e = f.elements[i];
&

!e.optional) {
 // First check if the field is empty
 if ((e.value == null) || (e.value == "") ||
isblank(e.value)) {
 empty_fields += "\n " + e.name;
 continue;
 }

ow check for fields that are supposed to be numeric
 (e.numeric || (e.min != null) || (e.max != null)) {
 var v = parseFloat(e.value);
 if (isNaN(v) ||

 errors += " and less than " + e.max;
 else if (e.max != null)
 errors += " that is less than " + e.max;
 errors += ".\n";
 }

 // Otherwise, return true.

 // Then check for fie
Also, if

 // that they are numbers and are in the right range. If the elem
has a
 // "numeric" property defined, verify that it is a number, but
don't check

wrong.
 for(var i = 0; i < f.length; i++) {

 if (((e.type == "text") || (e.type == "textarea")) &

 // N

 if

 ((e.min != null) && (v < e.min)) ||
 ((e.max != null) && (v > e.max))) {
 errors += "- The field " + e.name + " must be a
number";
 if (e.min != null)
 errors += " that is greater than " + e.min;
 if (e.max != null && e.min != null)

 }
 }
 }

 // Now, if there were any errors, display the messages, and
 // return false to prevent the form from being submitted.

 if (!empty_fields && !errors) return true;

 msg = "___
_\n\n"
 msg += "The form was not submitted because of the following
error(s).\n";
 msg += "Please correct these error(s) and re-submit.\n";
 msg += "___
_\n\n"

 if (empty_fields) {
 msg += "- The following required field(s) are empty:"
 + empty_fields + "\n";
 if (errors) msg += "\n";
 }
 msg += errors;
 alert(msg);
 return false;
}
</script>

<!---

 Here's a sample form to test our verification. Note that we
 call verify() from the onsubmit event handler and return
whatever
 value it returns. Also note that we use the onsubmit handler as
 an opportunity to set properties of the Form objects that verify(
)
 requires for the verification process.

--->

">

ame">

ea>

Phone Number: <input type="text" name="phonenumber">

<form onsubmit="
 this.firstname.optional = true;
 this.phonenumber.optional = true;
 this.zip.min = 0;
 this.zip.max = 99999;
 return verify(this);

rst name: <input type="text" name="firstnFi

Last name: <input type="text" name="lastname">

area name="address" rows="4" cols="40"></textarAddress:
<text

Zip Code: <input type="text" name="zip">

<input type="submit">
</form>

Chapter 16. Scripting Cookies
The Document object contains a property named cookie that was not discussed in
Chapter 14. On the surface, this property appears to be a simple string value; however,
the cookie property controls a very important feature of the web browser and is
important enough to warrant a complete chapter of its own.

16.1 An Overview of Cookies
A cookie is a small amount of named data stored by the web browser and associated with
a particular web page or web site.[1] Cookies serve to give the web browser a memory, so
that scripts and server-side programs can use data that was input on one page in another
page, or so the browser can recall user preferences or other state variables when the user
leaves a page and then returns. Cookies were originally designed for CGI programming,
and at the lowest level, they are implemented as an extension to the HTTP protocol.
Cookie data is automatically transmitted between the web browser and web server, so
CGI scripts on the server can read and write cookie values that are stored on the client.
As we'll see, JavaScript can also manipulate cookies using the cookie property of the
Document object.

[1] The name "cookie" does not have a lot of significance, but it is not used without precedent. In the obscure annals of computing history, the
term "cookie" or "magic cookie" has been used to refer to a small chunk of data, particularly a chunk of privileged or secret data, akin to a
password, that proves identity or permits access. In JavaScript, cookies are used to save state and can serve to establish a kind of identity for a
web browser. Cookies in JavaScript do not use any kind of cryptography, however, and are not secure in any way.

e
ent. You create, modify, or delete a cookie by setting the value of

the cookie property. Later sections of this chapter explain in detail how this works. To
er, you need to know more about cookies and

cookie's lifetime. Cookies are transient by default -- the values they store last for the

ie to last beyond a single browsing session, you use its expires attribute to
 a local
e

a
coo . By default, a cookie is associated with, and accessible to, the web

directories

cookie is a string property that allows you to read, create, modify, and delete the cookie
or cookies that apply to the current web page. Although cookie appears at first to be a
normal read/write string property, its behavior is actually more complex. When you read
the value of cooki , you get a string that contains the names and values of all the cookies
that apply to the docum

use the cookie property effectively, howev
how they work.

In addition to a name and a value, each cookie has four optional attributes that control its
lifetime, visibility, and security. The first attribute is expires, which specifies the

duration of the web-browser session but are lost when the user exits the browser. If you
want a cook
specify an expiration date -- this attribute causes the browser to save the cookie in
file so that it can read it back in the next time the user visits the web page. Once th
expiration date has passed, the cookie is automatically deleted from the cookie file.

The second attribute of a cookie is path, which specifies the web pages with which
kie is associated

page that created it and any other web pages in the same directory or any sub

of that directory. If the web page http://www.acme.com/catalog/index.html creates a

index.html, but it is not visible to
http://www.acme.com/about.html.

ugh, you'll
 page

ters his mailing address in a form on one
e he returns to

ere he is
ookie.

en, any web page from the same web server that contains that path in its URL can

s its path set to "/catalog", that
et to

ver at order.acme.com may need to read cookie values set
ere the third cookie attribute, domain, comes in. If a

in
,

ibute is
ult is the hostname of the web server that serves the page.

Note that you cannot set the domain of a cookie to a domain other than the domain of

ies

which means that they are transmitted over a normal, insecure HTTP connection. If a
en the browser and server are

 not Java-
Script object properties. We'll see later in the chapter how you set these cookie atributes.

spec.html

cookie, for example, that cookie is also visible to
http://www.acme.com/catalog/order.html and
http://www.acme.com/catalog/widgets/

This default visibility behavior is often exactly what you want. Sometimes, tho
want to use cookie values throughout a multipage web site, regardless of which
creates the cookie. For instance, if the user en
page, you may want to save that address to use as the default the next tim
the page and also as the default in an entirely unrelated form on another page wh

ed to enter a billing address. To allow this usage, you specify a path for the cask
hT

share the cookies. For example, if a cookie set by
http://www.acme.com/catalog/widgets/index.html ha
cookie is also visible to http://www.acme.com/catalog/order.html. Or, if the path is s
"/", the cookie is visible to any page on the www.acme.com web server.

By default, cookies are accessible only to pages on the same web server from which they
were set. Large web sites may want cookies to be shared across multiple web servers,
however. For example, the ser
from catalog.acme.com. This is wh
cookie created by a page on catalog.acme.com sets its path attribute to "/" and its doma
attribute to ".acme.com", that cookie is available to all web pages on catalog.acme.com
orders.acme.com, and any other server in the acme.com domain. If the domain attr
not set for a cookie, the defa

your server.

The fourth and final cookie attribute is a boolean attribute named secure that specif
how cookie values are transmitted over the network. By default, cookies are insecure,

cookie is marked secure, however, it is transmitted only wh
connected via HTTPS or another secure protocol.

Note that the expires, path, domain, and secure attributes of a cookie are

If you are interested in the complete technical details of how cookies work, see
http://www.netscape.com/newsref/std/cookie_ . This document is the original

cification for HTTP cookies; it contains low-level details that are more suitable to
CGI programming than to JavaScript programming. The following sections discuss how

and how you can specify the expires,

spe

you can set and query cookie values in JavaScript
path, domain, and secure attributes of a cookie.

16.2 Storing Cookies

To associate a transient cookie value with the current document, simply set the cookie

The next time you read the property, the name/value pair you stored is includ

e()

ost
s,

ng the

 create a cookie that persists
e code like this:

var nextyear = new Date();
nextyear.setFullYear(nextyear.getFullYear() + 1);

document.lastModified +
);

ie by appending
e is written to the

kie property:

; domain=domain

To change the value of a cookie, set its value again, using the same name and the new

n

property to a string of the form:

name=value

For example:

document.cookie = "version=" + escape(document.lastModified);

cookie ed
ent. Cookie values may not include semicolons, in the list of cookies for the docum

commas, or whitespace. For this reason, you may want to use the JavaScript escap
function to encode the value before storing it in the cookie. If you do this, you'll have to
use the corresponding function when you read the cookie value. unescape()

A cookie written as described above lasts for the current web-browsing session but is l
when the user exits the browser. To create a cookie that can last across browser session
include an expiration date by setting the expires attribute. You can do this by setti
cookie property to a string of the form:

name=value; expires=date

When setting an expiration date like this, date should be a date specification in the
e.toGMTString(). For example, toformat written by Dat

 a year, you can usfor

document.cookie = "version=" +
 "; expires=" + nextyear.toGMTString(

Similarly, you can set the path, domain, and secure attributes of a cook
strings of the following format to the cookie value before that valu
coo

; path=path

; secure

value. Use whatever values are appropriate for expires, path, and the other attributes.
To delete a cookie, set it again using the same name, an arbitrary value, and an expiratio

xpired date that has already passed. Note that the browser is not required to delete e

cookies immediately, so a cookie may remain in the browser's cookie file past its

ons

int uld
e them in moderation. Web browsers are not required to retain more than 300 cookies

te on the
oward this 4-

k trictive of these is the 20 cookies per server limit. In order to

expiration date.

16.2.1 Cookie Limitati

Cookies are intended for infrequent storage of small amounts of data. They are not
ended as a general-purpose communication or data-transfer mechanism, so you sho

us
total, 20 cookies per web server (for the entire server, not just for your page or si
server), or 4 kilobytes of data per cookie (both name and value count t

ilobyte limit). The most res
avoid reaching that limit, you may want to avoid using a separate cookie for each state
variable you want to save. Instead, you can encode several related state variables into a
single named cookie. Example 16-1, later in this chapter, shows one way that this can be

alue it returns is a
 that apply to the current document.[2]

done.

16.3 Reading Cookies
When you use the cookie property in a JavaScript expression, the v
string that contains all the cookies The string is a list
of name=value pairs separated by semicolons, where name is the name of a cookie and

tring value. This value does not include any of the attributes that may have
he cookie. To determine the value of a particular named cookie, you can use

the Strin and methods, or you can use
okies.

plorer 3, the cookie property works only for Document objects that were retrieved using the HTTP protocol. Documents
retrieved from the local filesystem or via other protocols, such as FTP, cannot have cookies associated with them.

Once you have extracted the value of a cookie from the cookie property, you must
terpret that value based on whatever format or encoding was used by the cookie's

creator. For example, the cookie might store multiple pieces of information in colon-
parated fields. In this case, you would have to use appropriate string methods to extract

the various fields of information. Don't forget to use the unescape() function on the
ookie value if it was encoded using the escape() function.

The following code shows how you might read the cookie property, extract a single
cookie from it, and use the value of that cookie:

// Read the cookie property. This returns all cookies for this
document.
var allcookies = document.cookie;
// Look for the start of the cookie named "version"
var pos = allcookies.indexOf("version=");

// If we find a cookie by that name, extract and use its value
if (pos != -1) {
 var start = pos + 8; // Start of cookie value

value is its s
een set for tb

g.indexOf() String.substring()
String.split() to break the string into individual co

[2] In Internet Ex

in

se

c

 var end = allcookies.indexOf(";", start); // End of cookie value
 if (end == -1) end = allcookies.length;
 var value = allcookies.substring(start, end); // Extract the value
 value = unescape(value); // Decode it

 // Now that we have the cookie value, we can use it.
 // In this case, the cookie was previously set to the modification
 // date of the document, so we can use it to see if the document
has
 // changed since the user last visited.
 if (value != document.lastModified)
 alert("This document has changed since you were last here");
}

Note that the string returned when you read the value of the cookie property does not
 contain any information about the various cookie attributes. The cookie property allows

you to set those attributes, but it does not allow you to read them.

16.4 Cookie Example
Example 16-1 brings together all the aspects of cookies we have discussed so far. First,
the example defines a Cookie class. When you create a Cookie object, you specify a

lly, an expiration time, a path, a
e cookie should be secure. After

 three methods. The store() method loops through all of the
user-defined properties of the Cookie object and concatenates their names and values into
a single string that serves as the value of the cookie. The load() method of a Cookie
object reads the cookie property of the Document object to obtain the values of all the
cookies for the document. It searches this string to find the value of the named cookie and
then parses this value into individual names and values, which it stores as properties of
the Cookie object. Finally, the remove() method of the Cookie object deletes the
specified cookie from the document.

After defining the Cookie class, Example 16-1

Document object, a name for the cookie, and, optiona
domain, and a boolean value that indicates whether th
creating a Cookie object, you can set arbitrary string properties on this object; the values
of these properties are the values stored in the cookie.

The Cookie class defines

 demonstrates a useful and elegant way to
use cookies. The code is somewhat complicated but is worth studying carefully. You may
want to start with the test program at the end of the example; it shows a typical usage of
the Cookie class.

 16-1. A utility class for working with cookies

 a Cookie object for the specified
, with a specified name and optional attributes.

// Arguments:
ch the cookie is stored.

Example
<script language="JavaScript1.1">

structor function: creates// The con
nt// docume

// document: The Document object for whi
Required.

// name: A string that specifies a name for the cookie. Required.
s: An optional number that specifies the number of hours

from now
// after which the cookie should expire.

h

// domain: An optional string that specifies the cookie domain
attribute.
// secure: An optional boolean value that, if true, requests a
secure cookie.
//
function Cookie(document, name, hours, path, domain, secure)
{
 // All the predefined properties of this object begin with '$'
 // to distinguish them from other properties, which are the values
to
 // be stored in the cookie
 this.$document = document;
 this.$name = name;
 if (hours)
 this.$expiration = new Date((new Date()).getTime() +
hours*3600000);
 else this.$expiration = null;
 if (path) this.$path = path; else this.$path = null;
 if (domain) this.$domain = domain; else this.$domain = null;
 if (secure) this.$secure = true; else this.$secure = false;
}

 of each state variable, in case it contains punctuation or other
 illegal characters.

 var cookieval = "";
 for(var prop in this) {
 // Ignore properties with names that begin with '$' and also
methods
 if ((prop.charAt(0) == '$') || ((typeof this[prop]) ==
'function'))
 continue;
 if (cookieval != "") cookieval += '&';
 cookieval += prop + ':' + escape(this[prop]);
 }

 // Now that we have the value of the cookie, put together the
 // complete cookie string, which includes the name and the various
 // attributes specified when the Cookie object was created

 cookie += '; expires=' + this.$expiration.toGMTString();
 if (this.$path) cookie += '; path=' + this.$path;
 if (this.$domain) cookie += '; domain=' + this.$domain;
 if (this.$secure) cookie += '; secure';

// hour

// path: An optional string that specifies the cookie pat
attribute.

// This function is the store() method of the Cookie object
Cookie.prototype.store = function () {
 // First, loop through the properties of the Cookie object and
 // put together the value of the cookie. Since cookies use the
 // equals sign and semicolons as separators, we'll use colons
 // and ampersands for the individual state variables we store
 // within a single cookie value. Note that we escape the value
 //
 //

 var cookie = this.$name + '=' + cookieval;
 if (this.$expiration)

 // Now store the cookie by setting the magic Document.cookie
property
 this.$document.cookie = cookie;
}

// This function is the load() method of the Cookie object
Cookie.prototype.load = function() {
 // First, get a list of all cookies that pertain to this document
 // We do this by reading the magic Document.cookie property
 var allcookies =
 if (allcookies == "") return false;

 // Now extract just the named cookie from that list

start = allco $name + '=');
start == -1) eturn false; // Cookie not defi for this

page
tart += this.$na // Skip name and e ls sign
ar end = allcook es.indexOf(';', start);

 if (end == -1) end = allcookies.length;
okieval = a start, end);

 // Now that we've extracted the value of the named cookie, we
st break tha ndividual state riable

 // other by ampersands, and the individual names and values are
from the t() method

 // to parse everything.
 var a = cookieval.split('&'); // Break it into an array of

value pairs
 for(var i=0; i < a.length; i++) // Break each pair into an array
 a[i] = a[i].split(':');

}

// This function is the remove() method of the Cookie object
ookie.prototype.remove = function() {
 var cookie;
 cookie = this.$name + '=';
 if (this.$path) cookie += '; path=' + this.$path;
 if (this.$domain) cookie += '; domain=' + this.$domain;
 cookie += '; expires=Fri, 02-Jan-1970 00:00:00 GMT';

 this.$document.cookie = cookie;
}

this.$document.cookie;

 var
 if (

okies.indexOf(this.
r ned

 s
 v

me.length + 1; qua
i

 var co

llcookies.substring(

 // mu
 // names and values. The name/value pairs are separated from each

t value down into i va

 // separated each other by colons. We use spli

name/

 // Now that we've parsed the cookie value, set all the names and
values
 // of the state variables in this Cookie object. Note that we
unescape()
 // the property value, because we called escape() when we stored
it.
 for(var i = 0; i < a.length; i++) {
 this[a[i][0]] = unescape(a[i][1]);
 }

 // We're done, so return the success code
 return true;

C

//===
// The previous code is the definition of the Cookie class.
// The following code is a sample use of that class.
//===

// Create the cookie we'll use to save state for this web page.
// Since we're using the default path, this cookie will be accessible
// to all web pages in the same directory as this file or "below" it.
// Therefore, it should have a name that is unique among those pages.
// Note that we set the expiration to 10 days in the future.
var visitordata = new Cookie(document, "name_color_count_state",

240);

// First, try to read data stored in the cookie. If the cookie is not
// defined, or if it doesn't contain the data we need, then query the
// user for that data.
if (!visitordata.load() || !visitordata.name || !visitordata.color) {
 visitordata.name = prompt("What is your name:", "");
 visitordata.color = prompt("What is your favorite color:", "");
}

// Keep track of how many times this user has visited the page:
if (visitordata.visits == null) visitordata.visits = 0;
visitordata.visits++;

// Store the cookie values, even if they were already stored, so that
the
// expiration date will be reset to 10 days from this most recent
visit.
// Also, store them again to save the updated visits state variable.
visitordata.store();

// Now we can use the state variables we read:
document.write('' +

<input type="button" value="Forget My Name"
onclick="visitordata.remove();">
</form>

 'Welcome, ' + visitordata.name + '!' +
 '' +
 '<p>You have visited ' + visitordata.visits + '
times.');
</script>

<form>

Chapter 17. The Document Object
Model

 document object model (DOM) is an application programm g interface (API) for
 a document (such as an HTML docum m g

s elements (such as HTML tags f text) at make up
ocument. JavaScript-enabled web browsers have always defi ed a document object

 a web-browse ay specify, ple, that the forms in an HTML
ocument are accessible through the forms[] array of the Document object.

In this chapter, we'll discuss the W3C DOM, a standard document object model defined
by the World Wide Web Consortium and implemented (at least partially) by Netscape 6
and Internet Explorer 5 and 6. This DOM standard[1]

A in
representing
he variou

ent) and accessing and
nd strings o

anipulatin
at t

d
a th

n
th

model; r DOM m for exam
d

 is a full-featured superset of the
traditional web-browser DOM. It represents HTML (and XML) documents in a tree
structure and defines properties and methods for traversing the tree and examining and
modifying its nodes. Other portions of the standard specify techniques for defining event
handlers for the nodes of a document, working with the style sheets of a document, and
manipulating contiguous ranges of a document.

[1] Technically, the W3C issues "recommendations." These recommendations serve the same purpose and carry the same weight as international
standards do, however, and are called "standards" in this book.

This chapter begins with an overview of the DOM standard and then describes the core
portions of the standard for working with HTML documents. The discussion of the core
standard is followed by short sections that explain the DOM-like features of Internet

s of
nced

HTML documents have a hierarchical structure that is represented in the DOM as a tree
structure. The nodes of the tree represent the various types of content in a document. The
tree representation of an HTML document primarily contains nodes representing
elements or tags such as <body> and <p> and nodes representing strings of text. An
HTML document may also contain nodes representing HTML comments.[2]

Explorer 4 and Netscape 4. The chapter ends with an overview of two optional part
the DOM standard that are closely related to the core. Later chapters cover adva
DOM features for working with style sheets and events.

17.1 An Overview of the DOM
The DOM API is not particularly complicated, but before we can begin our discussion of
programming with the DOM, there are a number of things you should understand about
the DOM architecture.

17.1.1 Representing Documents as Trees

 Consider the
following simple HTML document:

[2] The DOM can also be used to represent XML documents, which have a more complex syntax than HTML documents, and the tree
representation of such a document may contain nodes that represent XML entity references, processing instructions, CDATA sections, and so
on. Most client-side JavaScript programmers do not need to use the DOM with XML documents, and although the XML-specific features of
the DOM are covered in the DOM reference section, they are not emphasized in this chapter.

<html>
 <head>
 <title>Sample Document</title>

 <h1>An HTML Document</h1>
 <p>This is a <i>simple</i> document.
 </body>
</html>

The DOM representation of this document is the tree pictured in Figure 17-1

 </head>
 <body>

.

Figure 17-1. The tree representation of an HTML document

If you are not already familiar with tree structures in computer programming, it is helpfu
to know that they borrow terminology from family trees. The node directly above a node
is the

l

e

17.1.2 Nodes

parent of that node. The nodes one level directly below another node are the
children of that node. Nodes at the same level, and with the same parent, are siblings. Th
set of nodes any number of levels below another node are the descendants of that node.
And the parent, grandparent, and all other nodes above a node are the ancestors of that
node.

The DOM tree structure illustrated in Figure 17-1 is represented as a tree of various type
of Node objects. The Node interface

s
[3] defines properties and methods for traversing and

manipulating the tree. The childNodes property of a Node object returns a list of
children of the node, and the firstChild , lastChild, nextSibling,

previousSibling, and parentNode properties provide a way to traverse the tree o
nodes. Methods such as

f

 The DOM standard defines interfaces, not classes. If you are not familiar with the term interface in object-oriented programming, you can
think of it as an abstract kind of class. We'll describe the difference in more detail later in this DOM overview.

17.1.2.1 Types of nodes

Different types of nodes in the document tree are represented by specific subinterfaces of
Node. Every Node object has a nodeType property that specifies what kind of node it is.
If the nodeType property of a node equals the constant Node.ELEMENT_NODE, for
example, you know the Node object is also an Element object and you can use all the
methods and properties defined by the Element interface with it. Table 17-1

appendChild() , removeChild(), replaceChild(), and
insertBefore() enable you to add and remove nodes from the document tree. We'll
see examples of the use of these properties and methods later in this chapter.

[3]

 lists the node
types commonly encountered in HTML documents and the nodeType value for each one.

Table 17-1. Common node types

Interface nodeType constant nodeType value

Element
Node.ELEMENT_NODE

1

Text
Node.TEXT_NODE

3

Document
Node.DOCUMENT_NODE
 9

Comment
Node.COMMENT_NODE
 8

DocumentFragment
Node.DOCUMENT_FRAGMENT_NODE
 11

Attr
Node.ATTRIBUTE_NODE
 2

The Node at the root of the DOM tree is a Document object. The documentElement
property of this object re

fers to an Element object that represents the root element of the

document. For HTML documents, this is the <html> tag that is either explicit or implicit
in the docu t nodes,
in addition cts,
which represent tags such as <html> and <i>, and Text objects, which represent strings
of text. If the docum comments, those comments are repres
the DOM tree by Comment

ment. (The Document node may have other children, such as Commen
 to the root element.) The bulk of a DOM tree consists of Element obje

ent parser preserves ented in
 objects. Figure 17-2 shows a partial class hierarchy for these

er core DO nterfaand oth M i ces.

Figure 17-2. A partial class hierarchy of the core DOM API

f ement (such as the src and width attributes of an <im may
 , setAttribute(

e() met .

Another, more awkward way to work with attributes is with the getAttributeNode()
ich re an A ute and its value. (One reason

to use this more awkward technique is that the Attr interface defines a specified
property that allows you to determine whether the attribute is literally specified in the
document, or whether its value is a default value.) The Attr interface appears in Figure

17.1.2.2 Attributes

The attributes o
be queried, set, and deleted using the

an el g> tag)
, and getAttribute()

hods of the Element interface
)

removeAttribut

method, wh turns ttr object representing an attrib

17-2, and it is a type of node. Note, however, that Attr objects do not appear in the
childNodes[] array of an element and are not directly part of the document tree in the
way that Element and Text nodes are. The DOM specification allows Attr nodes to be
accessed through the attributes[] array of the Node interface, but Microsoft's Internet
Explorer defines a different and incompatible attributes[] array that makes it
impossible to use this feature portably.

17.1.3 The DOM HTML API

The DOM standard was designed for use with both XML and HTML documents. The
core DOM API -- the Node, Element, Document, and other interfaces -- are relatively
generic and apply to both types of documents. The DOM standard also includes
interfaces that are specific to HTML documents. As you can see from Figure 17-2,
HTMLDocument is an HTML-specific subinterface of Document, and HTMLElement is
an HTML-specific subinterface of Element. Furthermore, the DOM defines tag-specific
interfaces for many HTML elements. These tag-specific interfaces, such as

HTMLBodyElement and HTMLTitleElement, typically define a set of properties that
mirror the HTML tag's attributes.

The HTMLDocument interface defines various document properties and methods that
were supported by browsers prior to W3C standardization. These include the location
property, forms[] array, and write() method, which are described in Chapter 13,
Chapter 14, and Chapter 15.

The HTMLElement interface defines id, style, title, lang, dir , and className
properties. These properties allow convenient access to the values of the id, style,
title, lang, dir, and class attributes, which are allowed on all HTML tags. A number
of HTML tags, listed in Table 17-2, accept no attributes other than these six, and so are
fully represented by the HTMLElement interface.

Table 17-2. Simple HTML tags

<abbr>

<acronym>

<address> <bdo>

<big>

<center>

<cite>

<code>

<dd>

<dfn>

<dt>

<i>

<kbd>

<noframes>

<noscript>

<s>

<samp>

<small>

<strike>

<sub>

<sup>

<tt>

<u>

<var>

All other HTML tags have corresponding interfaces defined by the HTML portion of the
DOM specification. For many HTML tags, these interfaces do nothing more than provide

re

erred) way to query and set attribute values is with the getAttribute()
and setAttribute() methods of the Element object.

a set of properties that mirror their HTML attributes. For example, the tag has a
corresponding HTMLUListElement interface, and the <body> tag has a corresponding
HTMLBodyElement interface. Because these interfaces simply define properties that a
standardized by the HTML standard, they are not documented in detail in this book. You
can safely assume that the HTMLElement object that represents a particular HTML tag
has properties for each of the standard attributes for that tag (but see the naming
conventions described in the next section). Note that the DOM standard defines
properties for HTML attributes as a "convenience" to script writers. The general (and
possibly pref

Some of the interfaces defined in the HTML DOM define additional properties or
methods, other than those that mirror HTML attribute values. For example, the
HTMLInputElement interface defines focus() and blur() methods, and the
HTMLFormElement interface defines and methods and a

ave been made part of the DOM standard for backward compatibility with existing
practice. Interfaces like these are documented in the DOM reference section. You can
usually also find information about the "existing practice" portions of these interfaces in
the client-side reference section, although this information is typically referenced under a
name that also predates DOM standardization; for example, you can find information
about HTMLFormElement and HTMLInputElement in the client-side reference section

When w

ple words, the first
re capitalized. Thus, the maxlength attribute

nput> tag translates into the maxLength property of HTMLInputElement.

When an HTML attribute name conflicts with a JavaScript keyword, it is prefixed with
the string "html" to avoid the conflict. Thus, the for attribute of the <label> tag
translates to the htmlFor property of the HTMLLabelElement. An exception to this rule
is the class attribute (which can be specified for any HTML element); it translates to the
className property of HTMLElement.[4]

submit() reset() length
property. Methods and properties like these typically predate DOM standardization and
h

under "Form" and "Input."

17.1.3.1 HTML naming conventions

orking with the HTML-specific portions of the DOM standard, you should be
L-specific interfaces aware of some simple naming conventions. Properties of the HTM

e property name consists of multibegin with lowercase letters. If th
letters of the second and subsequent words a
of the <i

[4] The name className is misleading, because in addition to specifying a single class name, this property (and the HTML attribute it
represents) can also specify a space-separated list of class names.

17.1.4 DOM Levels and Features

There are two versions, or "levels," of the DOM standard. DOM Level 1 was
standardized in October, 1998. It defines the core DOM interfaces, such as Node,
Element, Attr, and Document, and also defines various HTML-specific interfaces. DOM
Level 2 was standardized in November, 2000.[5] In addition to some updates to the core
interfaces, this new version of the DOM is greatly expanded to define standard APIs for
working with document events and CSS style sheets and to provide additional tools for

er

Level 1 standard.

working with ranges of documents. As of this writing, the DOM Working Group at the
W3C is working to standardize DOM Level 3. You may also sometimes see a reference
to DOM Level 0. This term does not refer to any formal standard but is used to ref
informally to the common features of the HTML document object models implemented
by Netscape and Internet Explorer prior to W3C standardization.

[5] Except for the HTML-specific portions of the standard, which are still at the "working draft" stage as of November 2001. Fortunately, the
current working draft is presumed stable and includes only minor changes (documented in this book) from the HTML-specific portions of the

As of Level 2, the DOM standard has been "modularized." The core module, which
nt, and

s are
o
implementation. The DOM implementation of a web browser would obviously support

defines the basic tree structure of a document with the Document, Node, Eleme
Text interfaces (among others), is the only required module. All other module

ptional and may or may not be supported, depending on the needs of the

the HTML module, since web documents are written in HTML. Browsers that support
CSS style sheets typically support the StyleSheets and CSS modules, because (as we'll
see in Chapter 18) CSS styles play a crucial role in Dynamic HTML programming.
Similarly, since almost all interesting client-side JavaScript programming requires event-

o support the Events module of
the DOM specification. Unfortunately, the le was only recently defined by

ot yet widely supported at the time of this writing.
e'll see a complete list of DOM Level 2 modules in the next section.

s -- most

handling capabilities, you would expect web browsers t
 Events modu

the DOM Level 2 specification and is n
W

17.1.5 DOM Conformance

At the time of this writing, no browser is completely conformant to the DOM standard.
Recent releases of Mozilla come closest, and complete DOM Level 2 conformance is a
goal of the Mozilla project. Netscape 6.1 does a good job of conforming to the most
important Level 2 modules, and Netscape 6.0 does an adequate job but has gaps in its
coverage. Internet Explorer 6 is mostly compliant (with at least one annoying exception)
with the Level 1 DOM, but does not support many of the Level 2 module
notably the Events module, which is the topic of Chapter 19. Internet Explorer 5 and 5.5
have substantial gaps in their conformance but support key DOM Level 1 methods well
enough to run most of the examples in this chapter. The Macintosh version of IE 5 has
considerably better support for the DOM than the Windows version of IE 5.

In addition to Mozilla, Netscape, and Internet Explorer, several other browsers offer at
least partial support for the DOM. The number of available browsers has become too
large, and the rate of change in the area of standards support has grown too fast, for this
book to even attempt to provide definitive statements about which browsers support
which particular DOM features. Therefore, you'll have to rely on other information
sources to determine exactly how conformant the DOM implementation in any particu
web browser is.

One source for conformance information is the implementation itself. In a con
implementation, the implementation property of the Do

lar

formant
cument object refers to a

ing

es

DOMImplementation object that defines a method named hasFeature(). You can use
this method (if it exists) to ask an implementation whether it supports a specific feature
(or module) of the DOM standard. For example, to determine whether the DOM
implementation in a web browser supports the basic DOM Level 1 interfaces for work
with HTML documents, you could use the following code:

if (document.implementation &&
 document.implementation.hasFeature &&
 document.implementation.hasFeature("html", "1.0")) {
 // The browser claims to support Level 1 Core and HTML interfac

}

The hasFeature() method takes two arguments: the first is the name of the feature to
check, and the second is a version number, expressed as a string. It returns true if the
specified version of the specified feature is supported. Table 17-3 lists the feature
name/version number pairs that are defined by the DOM Level 1 and Level 2 standards.
Note that the feature names are case-insensitive: you can capitalize them any way you

support of a feature and are therefore implied by a return value of true. For example, if
 indicates that the MouseEvents module is supported, this implies that

()

choose. The fourth column of the table specifies what other features are required for

hasFeature()
UIEvents is also supported, which in turn implies that the Events, Views, and Core
modules are supported.

Table 17-3. Features that can be tested with hasFeature

Feature name Version Description Implies

HTML 1.0 Level 1 Core and HTML interfaces

XML 1.0 Level 1 Core and XML interfaces

Core 2.0 Level 2 Core interfaces

HTML 2.0 Level 2 HTML interfaces Core

XML 2.0 Level 2 XML-specific interfaces Core

Views 2.0 AbstractView interface Core

StyleSheets 2.0 Generic style-sheet traversal Core

CSS 2.0 CSS styles Core, Views

CSS2 2.0 CSS2Properties interface CSS

Events 2.0 Event-handling infrastructure Core

UIEvents 2.0 User-interface events (plus Events and
Views)

Events,
Views

MouseEvents 2.0 Mouse events UIEvents

HTMLEvents 2.0 HTML events Events

MutationEvents 2.0 Document mutation events Events

Range 2.0 Document range interfaces Core

Traversal 2.0 Document traversal interfaces Core

In Internet Explorer 6 (on Windows), hasFeature() returns true only for the feature
HTML and Version 1.0. It does not report compliance to any of the other features listed
in Table 17-3 (although, as we'll see in Chapter 18, it supports the most common uses of

e name

s

This book documents the interfaces that make up all of the DOM modules listed in Table

the CSS2 module.) In Netscape 6.1, hasFeature() returns true for most featur
and version numbers, with the notable exceptions of the Traversal and MutationEvents
features. It returns for the Core and CSS2 features with Version 2.0, indicating false

good). incomplete support (even though support for these features is quite

17-3. The he Core, HTML, Traversal, and Range modules are covered in this chapter. T
StyleSheets, CSS, and CSS2 modules are covered in Chapter 18, and the various Event
modules (except MutationEvents) are covered in Chapter 19. The DOM reference
includes complete coverage of all modules.

 section

6
ith

too voluminous and volatile to include in a printed book.

an active web developer, you undoubtedly already know or will discover many

t
e of this writing, the test suite effort is just

getting off e to be an invaluable resource for fine-grained
compliance testing of DOM implementations. See http://www.w3c.org/DOM/Test/

The hasFeature() method is not always perfectly reliable. As previously noted, IE
reports Level 1 compliance to HTML features even though there are some problems w
its compliance. On the other hand, Netscape 6.1 reports noncompliance to the Level 2

ture even though it is mostly compliant. In both cases, you need more detailed Core fea
information about exactly what is and is not compliant. This is exactly the type of

ormation that is inf

If you are
browser-specific support details on your own. There are also resources on the Web that
can help you. Most importantly, the W3C (in collaboration with the U.S. National
Institute of Standards and Technology) is working on developing an open source tes
suite for DOM implementations. At the tim

 the ground, but it ought to prov
 for

details.

The Mozilla organization has a set of test suites for a variety of standards, including
DOM Level 1 (available athttp://www.mozilla.org/quality/browser_sc.html). Netscape
has published a test suite that includes some DOM Level 2 tests (available
athttp://developer.netscape.com/evangelism/tools/testsuites/). Netscape has also
published a partisan (and dated) comparison of DOM compliance of an early Mozilla
release versus IE 5.5 (available at
http://home.netscape.com/browsers/future/standards.html). Finally, you can also find
compatibility and compliance information at independent sites on the Web. One notable
site is published by Peter-Paul Koch. You can find a link to his DOM Compatibility
Table from his main JavaScript page (http://www.xs4all.nl/~ppk/js/).

17.1.5.1 DOM conformance in Internet Explorer

Because IE is the most widely used web browser, a few special notes about its
 5 and later versions

support the Level 1 Core and HTML features well enough to run the examples in this
compliance to the DOM specifications are appropriate here. IE

chapter, and they support the key Level 2 CSS features well enough to run most of the
examples in Chapter 18. Unfortunately, IE 5, 5.5, and 6 do not support the DOM Level 2
Events module, even though Microsoft participated in the definition of this module and
had ample time to implement it for IE 6. As we'll see in Chapter 19, event handling
crucial for client-side event handling, and IE's lack of support for the standard event

is

model impedes the development of advanced client-side web applications.

gious problem, and the one you are most likely to encounter, is a minor but
de interface.

f
at

_NODE

do not exist.

nt

rogramming style to use constants instead of hardcoded integer literals in your

programs to define these constants if they are missing:

e = { // If there is no Node object, define one
llowing properties and

e are HTML node types

EXT_NODE: 3, // For XML-specific nodes, you need to add
 COMMENT_NODE: 8, // other constants here.
 DOCUMENT_NODE: 9,

}

17.1.6 Language-Independent DOM Interfaces

Although the DOM standard grew out of a desire to have a common API for dynamic

to be language-independent. This book describes only the JavaScript binding of the DOM

Although IE 6 claims (through its hasFeature() method) to support the Core and
e HTML interfaces of the DOM Level 1 standard, this support is actually incomplete. Th

most egre
annoying one: IE does not support the node-type constants defined by the No
Recall that each node in a document has a nodeType property that specifies what type o
node it is. The DOM specification also says that the Node interface defines constants th
represent each of the defined node types. For example, the constant Node.ELEMENT
represents an Element node. In IE (at least as high as version 6), these constants simply

The examples in this chapter have been modified to work around this problem by using
integer literals instead of the corresponding symbolic constants. For example, you'll see
code like this:

if (n.nodeType == 1 /*Node.ELEMENT_NODE*/) // Check if n is an Eleme

It is good p
code, and if you'd like to do this portably, you can include the following code in your

if (!window.Node) {
 var Nod
 ELEMENT_NODE: 1, // with the fo
values.
 ATTRIBUTE_NODE: 2, // Note that thes
only.
 T

 DOCUMENT_FRAGMENT_NODE: 11
 }

HTML programming, the DOM is not of interest only to web scripters. In fact, the
standard is currently most heavily used by server-side Java and C++ programs that parse
and manipulate XML documents. Because of its many uses, the DOM standard is defined

API, but you should be aware of a few other points. First, note that object properties in
the JavaScript binding are typical

ly mapped to pairs of get/set methods in other language

bindings. Thus, when a Java programmer asks you about the getFirstChild() method
 JavaScript binding of the Node

API doesn't define a getFirstChild() method. Instead, it simply defines a
firstChild property, and reading the value of this property in JavaScript is equal to
calling getFirstChild() in Java.

Another important feature of the JavaScript binding of the DOM API is that certain DOM
objects behave like JavaScript arrays. If an interface defines a method named item(),
objects that implement that interface behave like read-only numerical arrays. For
example, suppose you've obtained a NodeList object by reading the childNodes property
of a node. You can obtain the individual Node objects in the list by passing the desired
node number to the item() method, or, more simply, you can simply treat the NodeList
object as an array and index it directly. The following code illustrates these two options:

var n = document.documentElement; // This is a Node object.
var children = n.childNodes; // This is a NodeList object.
var head = children.item(0); // Here is one way to use a
NodeList.
var body = children[1]; // But this way is easier!

Similarly, if a DOM object has a namedItem() method, passing a string to this method
is the same as using the string as an array index for the object. For example, the following
lines of code are all equivalent ways to access a form element:

var f = document.forms.namedItem("myform");
var g = document.forms["myform"];
var h = document.forms.myform;

Because the DOM standard may be used in a variety of ways, the architects of the
standard were careful to define the DOM API in a way that would not restrict the ability
of others to implement the API as they saw fit. Specifically, the DOM standard defines
interfaces instead of classes. In object-oriented programming, a class is a fixed data type
that must be implemented exactly as specified. An interface, on the other hand, is a
collection of methods and properties that must be implemented together. Thus, an
implementation of the DOM is free to define whatever classes it sees fit, but those classes
must define the methods and properties of the various DOM interfaces.

This architecture has a couple of important implications. First, the class names used in an
implementation might not correspond directly to the interface names used in the DOM
standard (and in this book). Second, a single class may implement more than one
interface. For example, consider the Document object. This object is an instance of some
class defined by the web browser implementation. We don't know what the specific class
is, but we do know that it implements the Document interface; that is, all methods and
properties defined by Document are available to us through the Document object. Since

of the Node interface, you need to understand that the

web browsers work with HTML documents, we also know that the Document object
implements the HTMLDocument interface and that all methods and properties defined by
that interface are available to us as well. Furthermore, if a web browser supports CSS
style sheets and implements the DOM CSS module, the Document object also
implements the DocumentStyle and DocumentCSS DOM interfaces. And if the web
browser supports the Events and Views modules, Document implements the
DocumentEvent and DocumentView interfaces as well.

Because the DOM is broken into independent modules, it defines a number of minor add-
on interfaces, such as DocumentStyle, DocumentEvent, and DocumentView, that define
only one or two methods each. Interfaces such as these are never implemented
independently of the core Document interface, and for this reason, I do not document
them independently. When you look up the Document interface in the DOM reference
section, you'll find that it also lists the methods and properties of its various add-on
interfaces. Similarly, if you look up one of the add-on interfaces, you'll simply find a
cross-reference to the core interface with which it is associated. The exception to this rule
is when the add-on interface is a complex one. For example, the HTMLDocument
interface is always implemented by the same object that implements the Document
object, but because it adds substantial new functionality, I have given it a reference page
of its own.

Another important fact you need to understand is that since the DOM standard defines
interfaces instead of classes, it does not define any constructor methods. If you want to
create a new Text object to insert into a document, for example, you cannot simply say:

var t = new Text("this is a new text node"); // No such constructor!

Since it cannot define constructors, the DOM standard instead defines a number of useful
factory methods for creating objects in the Document interface. So, to create a new Text
node for a document, you would write the following:

var t = document.createTextNode("this is a new text node");

Factory methods defined by the DOM have names that begin with the word "create". In
addition to the factory methods defined by Document, a few others are defined by
DOMImplementation and available as document.implementation.

17.2 Using the Core DOM API
Now that we've studied the tree structure of documents and seen how the tree is
composed of Node objects, we can move on to study the Node object and document trees
in more detail. As I noted previously, the core DOM API is not terribly complex. The
following sections contain examples that demonstrate how you can use it to accomplish
common tasks.

17.2.1 Traversing a Document

As we've already discussed, the DOM represents an HTML document as a tree of Node
objects. With any tree structure, one of the most common things to do is traverse the tree,
examining each node of the tree in turn. Example 17-1 shows one way to do this. It is a
JavaScript function that recursively examines a node and all its children, adding up the
number of HTML tags (i.e., Element nodes) it encounters in the course of the traversal.
Note the use of the childNodes property of a node. The value of this property is a
NodeList object, which behaves (in JavaScript) like an array of Node objects. Thus, the
function can enumerate all the children of a given node by looping through the elements
of the childNodes[] array. By recursing, the function enumerates not just all children of
a given node, but all nodes in the tree of nodes. Note that this function also demonstrates
the use of the nodeType property to determine the type of each node.

Example 17-1. Traversing the nodes of a document
<head>
<script>
// This function is passed a DOM Node object and checks to see if that

e,

s
unters. If you invoke this function by passing it the

ment object, it traverses the entire DOM tree.
untTags(n) { // n is a Node
tags = 0; // Initialize the tag

counter

 var children = n.childNodes; // Now get all children

ength; i++) { // Loop through the
children
 numtags += countTags(children[i]); // Recurse on each one

}
</script>
</head>
<!-- Here's an example of how the countTags() function might be used
-->
<body onload="alert('This document has ' + countTags(document) + '
tags')">
This is a <i>sample</i> document.
</body>

node
// represents an HTML tag; i.e., if the node is an Element object. It
// recursively calls itself on each of the children of the nod
testing
// them in the same way. It returns the total number of Element object

enco// it
 Docu//

function co
num var

 if (n.nodeType == 1 /*Node.ELEMENT_NODE*/) // Check if n is an
Element
 numtags++; // Increment the
counter if so

of n
var i=0; i < children.l for(

 }
 return numtags; // Return the total
number of tags

Another point to notice about Example 17-1 is that the countTags() function it defines
is invoked from the onload event handler, so that it is not called until the document is
completely loaded. This is a general requirement when working with the DOM: you
cannot traverse or manipulate the document tree until the document has been fully
loaded.

op
onstrated in Example 17-2

In addition to the childNodes property, the Node interface defines a few other useful
properties. firstChild and lastChild refer to the first and last children of a node, and
nextSibling and previousSibling refer to adjacent siblings of a node. (Two nodes are
siblings if they have the same parent node.) These properties provide another way to lo
through the children of a node, dem . This example counts the
number of characters in all the Text nodes within the <body> of the document. Notice the
way the countCharacters() function uses the firstChild and nextSibling

if that

of the node and adds up the total
length

de
he
t

odeType == 3 /*Node.TEXT_NODE*/) // Check if n is a Text

 return n.length; // If so, return its
length
 // Otherwise, n may have children whose characters we need to count
 var numchars = 0; // Used to hold total characters of the children
 // Instead of using the childNodes property, this loop examines the
 // children of n using the firstChild and nextSibling properties.
 for(var m = n.firstChild; m != null; m = m.nextSibling) {
 numchars += countCharacters(m); // Add up total characters
found
 }
 return numchars; // Return total characters
}
</script>
</head>
<!--
 The onload event handler is an example of how the countCharacters()
 function might be used. Note that we want to count only the

properties to loop through the children of a node.

Example 17-2. Another way to traverse a document
<head>
<script>

ect and checks to see // This function is passed a DOM Node obj
node

esents a string of text; i.e., if the node is a Text object. If // repr
// so, it returns the length of the string. If not, it recursively
calls
// itself on each of the children

// of the text it finds. Note that it enumerates the children of a no
// using the firstChild and nextSibling properties. Note also that t
// function does not recurse when it finds a Text node, because Tex
nodes
// never have children.
function countCharacters(n) { // n is a Node
 if (n.n
object

characters
 in the <body> of the document, so we pass document.body to the
function.

-->
<body onload="alert('Document length: ' +
countCharacters(document.body))">
This is a sample document.<p>How long is it?
</body>

ding Specific Elements in a Document

specific
common to need a particular

Fortunately, the DOM API provides functions that make this easy for us.

17.2.2 Fin

The ability to traverse all nodes in a document tree gives us the power to find
nodes. When programming with the DOM API, it is quite
node within the document or a list of nodes of a specific type within the document.

In Example 17-2, we referred to the <body> element of an HTML document with the
 body property of the Document object is a JavaScript expression document.body. The

convenient special-case property and is the preferred way to refer to the <body> tag of an
document. If this convenience property did not exist, however, we could also

This expression calls the Document object's getElementsByTagName() method and
lects the first element of the returned array. The call to getElementsByTagName()

cuments
 in the first element of the

HTML
refer to the <body> tag like this:

document.getElementsByTagName("body")[0]

se
returns an array of all <body> elements within the document. Since HTML do
can have only one <body>, we know that we're interested

[6]returned array.

[6] Technically, the DOM API specifies that getElementsByTagName() returns a NodeList object. In the JavaScript bindin
of the DOM, NodeList objects behave like arrays and are typically used that way.

g

getElementsByTagName()
For example, to find all the tables within a document, you'd do this:

var tables = document.getElementsByTagName("table");
alert("This document contains " + tables.length + " tables");

Note that since HTML tags are not case-sensitive, the strings passed to
getElementsByTagName() are also not case-sensitive. That is, the previous code finds
<table> tags even if they are coded as <TABLE>. getElementsByTagName() returns
elements in the order in which they appear in the document. Finally, if you pass the
special string "*" to getElementsByTagName(), it returns a list of all the elements in
the document, in the order in which they appear. (This special usage is not supported in

You can use to obtain a list of any type of HTML element.

IE 5 and IE 5.5. See instead the IE-specific Document.all[] array in the client-side
reference section.)

Sometimes you don't want a list of elements but instead want to operate on a single
specific element of a document. If you know a lot about the structure of the document,
you may be able to use getElementsByTagName(). For example, if you want to d
something to the fourth paragraph in a document, you might use this code:

var myParagraph = document.getElementsByTagName("p")[3];

o

the

e for the element. Then you can look up
your desired element by its ID. F might code the special fourth paragraph

graph = document.getElementById("specialParagraph");

rn an array of elements like
 every id attribute is (or is

uite
 programming.

getElementById() and getElementsByTagName() are both methods of the
Document object. Element objects also define a method,

t
 specific

 makes it possible, for example, to
use to find a specific element and then to use

fic

// Find a specific Table element within a document and count its rows
var tableOfContents = document.getElementById("TOC");

This typically is not the best (nor the most efficient) technique, however, because it
depends so heavily on the structure of the document; a new paragraph inserted at
beginning of the document would break the code. Instead, when you need to manipulate
specific elements of a document, it is best to give those elements an id attribute that
specifies a unique (within the document) nam

or example, you
of your document with a tag like this:

<p id="specialParagraph">

You can then look up the node for that paragraph with JavaScript code like this:

var myPara

Note that the getElementById() method does not retu
getElementsByTagName() does. Because the value of
supposed to be) unique, getElementById() returns only the single element with the
matching id attribute. getElementById() is an important method, and its use is q

n DOMcommon i

getElementsByTagName()
however. This method of the Element object behaves just like the method of the
Document object, except that it returns only elements that are descendants of the elemen
on which it is invoked. Instead of searching the entire document for elements of a
type, it searches only within the given element. This

getElementById()
getElementsByTagName() to find all descendants of a given type within that speci
tag. For example:

var rows = tableOfContents.getElementsByTagName("tr");
var numrows = rows.length;

Finally, note that for HTML documents, the HTMLDocument object also defines a
etElementsByName() method. This method is like getElementById(), but it looks

at the name attribute of elements rather than the id attribute. Also, because the name
attribute is not expected to be unique within a document (for example, radio buttons

ents

t the real power of the core DOM
API lies in the features that allow you to
documents. The fo f modifying
documents and illustrate some of the possibilities.

Example 17-3

g

within HTML forms usually have the same name), getElementsByName() returns an
array of elements rather than a single element. For example:

// Find
var link = document.getElementsByName("top")[0];
// Find all <input type="radio" name="shippingMethod"> elem
var choices = document.getElementsByName("shippingMethod");

17.2.3 Modifying a Document

Traversing the nodes of a document can be useful, bu
 use JavaScript to dynamically modify

llowing examples demonstrate the basic techniques o

 includes a JavaScript function named reverse(), a sample document,
and an HTML button that, when pressed, calls the reverse() function, passing it the
node that represents the <body> element of the document. (Note the use of
getElementsByTagName() within the button's event handler to find the <body>
element.) The reverse() function loops backward through the children of the supplied
node and uses the removeChild() and appendChild() methods of the Node object to
reverse the order of those children.

Example 17-3. Reversing the nodes of a document
<head><title>Reverse</title>
<script>
function reverse(n) { // Reverse the order of the children of
Node n
 var kids = n.childNodes; // Get the list of children
 var numkids = kids.length; // Figure out how many children there
are
 for(var i = numkids-1; i >= 0; i--) { // Loop backward through the
children
 var c = n.removeChild(kids[i]); // Remove a child
 n.appendChild(c); // Put it back at its new
position
 }
}
</script>
</head>
<body>
<p>paragraph #1<p>paragraph #2<p>paragraph #3 <!-- A sample document -
->
<p> <!-- A button to call reverse(
)-->
<button onclick="reverse(document.body);"

>Click Me to Reverse</button>
</body>

The result of Example 17-3, illustrated in Figure 17-3, is that when the user clicks the
button, the order of the paragraphs and of the button are reversed.

Figure 17-3. A document before and after being reversed

There are a couple of points worth noting about Example 17-3. First, if you pass a node
 we could
eep in mind

ldNodes ent is
modified, the modifications are immediately visible through the NodeList. This is an

ually make some code trickier
ings
e of the

that is already part of the document to appendChild() it first removes it, so
). Second, khave simplified our code by omitting the call to removeChild(

 property (like all NodeList objects) is "live": when the documthat the chi

important features of the NodeList interface, but it can act
to write. A call to removeChild(), for example, changes the index of all the sibl
that follow that child, so if you want to iterate through a NodeList and delete som
nodes, you must write your looping code carefully.

Example 17-4 shows a variation on the reverse() function of the previous example.
 all

of the characters within that node. Example 17-4

This one uses recursion to reverse not only the children of a specified node, but also
the node's descendants. In addition, when it encounters a Text node, it reverses the order

 shows only the JavaScript code for this
new reverse() function. It could easily be used in an HTML document like the one
shown in Example 17-3, however.

Example 17-4. A recursive node-reversal function
rsively reverse all nodes beneath Node n and reverse Text nodes

et content of node

/ Store reversed text

// Recu
function reverse(n) {

{ // Reverse Text nodes if (n.nodeType == 3 /*Node.TEXT_NODE*/)
 var text = n.data; // G
 var reversed = "";
 for(var i = text.length-1; i >= 0; i--) // Reverse it
 reversed += text.charAt(i);
 n.data = reversed; /
 }

 else { // For non-Text nodes, recursively reverse the order of th
children

e

;
gth;

 for(var i = numkids-1; i >= 0; i--) { // Loop through
kids

 kid to new
position
 }
 }

xample 17-4

 var kids = n.childNodes

 var numkids = kids.len

 reverse(kids[i]); // Recurse to
reverse kid
 n.appendChild(n.removeChild(kids[i])); // Move

}

E shows one way to change the text displayed in a document: simply set the
data field of the appropriate Text node. Example 17-5 shows another way. This example
defines a function, uppercase(), that recursively traverses the children of a given node.
When it finds a Text node, the function replaces that node with a new Text node
containing the text of the original node, converted to uppercase. Note the use of the
document.createTextNode() method to create the new Text node and the use of
Node's replaceChild() method to replace the original Text node with the newly
created one. Note also that replaceChild() is invoked on the parent of the node to be
replaced, not on the node itself. The uppercase() function uses Node's parentNode
property to determine the parent of the Text node it replaces.

In addition to defining the uppercase() function, Example 17-5 includes two HTML

Each paragraph is identified with a unique name, specified with

ercase(n) {
 if (n.nodeType == 3 /*Node.TEXT_NODE*/) {

 // If the node is a Text node, create a new Text node that
 // holds the uppercase version of the node's text, and use the
 // replaceChild() method of the parent node to replace the
 // original node with the new uppercase node.

e());

 parent.replaceChild(newNode, n);

n

paragraphs and a button. When the user clicks the button, one of the paragraphs is
converted to uppercase.
the id attribute of the <p> tag. The event handler on the button uses the
getElementById() method to get the Element object that represents the desired
paragraph.

Example 17-5. Replacing nodes with their uppercase equivalents
<script>
// This function recursively looks at Node n and its descendants,
// replacing all Text nodes with their uppercase equivalents.
nction uppfu

 var newNode = document.createTextNode(n.data.toUpperCas
 var parent = n.parentNode;

 }
 else {
 // If the node is not a Text node, loop through its childre
 // and recursively call this function on each child.
 var kids = n.childNodes;

 for(var i = 0; i < kids.length; i++) uppercase(kids[i]);
 }
}
</script>

<!-- Here is some sample text. Note that the <p> tags have id

ed

placeData() methods.
These methods are not directly defined by the Text interface, but instead are inherited by
Text from Ch
"CharacterData" in the DOM reference section.

In the node-reversal examples, we saw how we could use the removeChild() and

attributes. -->
<p id="p1">This <i>is</i> paragraph 1.</p>
<p id="p2">This <i>is</i> paragraph 2.</p>

<!-- Here is a button that invokes the uppercase() function defin
above. -->
<!-- Note the call to document.getElementById() to find the desired
node. -->
<button onclick="uppercase(document.getElementById('p1'));">Click
Me</button>

The previous two examples show how to modify document content by replacing the text
contained within a Text node and by replacing one Text node with an entirely new Text
node. It is also possible to append, insert, delete, or replace text within a Text node with
the appendData() , insertData(), deleteData(), and re

aracterData. You can find more information about them under

appendChild() methods to reorder the children of a Node. Note, however, that we are
not restricted to changing the order of nodes within their parent node; the DOM API
allows nodes in the document tree to be moved freely within the tree (only within the
same document, however). Example 17-6 demonstrates this by defining a function named
embolden() that replaces a specified node with a new element (created with the
createElement() method of the Document object) that represents an HTML tag
and "reparents" the origi al node as a child of the new node. In an HTML document,
this causes any text within the node o

n
r its descendants to be displayed in boldface.

s the original node

// child of the new element.
function embolden(node) {
 var bold = document.createElement("b"); // Create a new
element
 var parent = node.parentNode; // Get the parent of the
node
 parent.replaceChild(bold, node); // Replace the node with

hild

Example 17-6. Reparenting a node to a element
<script>
// This function takes a Node n, replaces it in the tree with an
Element node

 then make// that represents an HTML tag, and
the

the tag
 bold.appendChild(node); // Make the node a c
of the tag

}
</script>

onclick="embolden(document.getElementById('p1'));">Embolden</button>

ply

e
eleme Attribute() method. For example:

ed

adline.setAttribute("align", "center"); // Set

 define JavaScript properties that
 as align),

he previous two examples showed how the contents of a Text node can be changed to
> node.
dd them

ary

ent. This
is

<!-- A couple of sample paragraphs -->
<p id="p1">This <i>is</i> paragraph #1.</p>
<p id="p2">This <i>is</i> paragraph #2.</p>

<!-- A button that invokes the embolden() function on the first
paragraph -->
<button

In addition to modifying documents by inserting, deleting, reparenting, and otherwise
rearranging nodes, it is also possible to make substantial changes to a document sim
by setting attribute values on document elements. One way to do this is with th

nt.set

var headline = document.getElementById("headline"); // Find nam
element
he
align='center'

The DOM elements that represent HTML attributes
correspond to each of their standard attributes (even deprecated attributes such
so you can also achieve the same effect with this code:

var headline = document.getElementById("headline");
headline.align = "center"; // Set alignment attribute.

17.2.4 Adding Content to a Document

T
uppercase and how a node can be reparented to be a child of a newly created <b

 new nodes and aThe embolden() function showed that it is possible to create
content to a document by creating the necessto a document. You can add arbitrary

Element nodes and Text nodes with document.createElement() and
em appropriately to the documdocument.createTextNode() and by adding th

 demonstrated in Example 17-7, which defines a function named debug(). This
nd it
 of

function provides a convenient way to insert debugging messages into a program, a
serves as a useful alternative to using the built-in alert() function. A sample use
this debug() function is illustrated in Figure 17-4.

Figure 17-4. Output of the debug() function

The first time debug() is called, it uses the DOM API to create a <div> element and
insert it at the end of the document. The debugging messages passed to on this debug()
first call and all subsequent calls are then inserted into this <div> element. Each
debugging message is displayed by creating a Text node within a <p> element and
inserting that <p> element at the end of the <div> element.

Example 17-7 also demonstrates a convenient but nonstandard way to add new content to
,
er

innerHTML <div>
ML
art

example for completeness.[7]

a document. The <div> element that contains the debugging messages displays a large
centered title. This title could be created and added to the document in the way that oth
content is, but in this example we instead use the property of the
element. Setting this property of any element to a string of HTML text causes that HT
to be parsed and inserted as the content of the element. Although this property is not p
of the DOM API, it is a useful shortcut that is supported by Internet Explorer 4 and later
and Netscape 6. Although it is not standard, it is in common use and is included in this

cument. For
rser is required. Note that appending bits of text to the

innerHTML property with the += operator is usually not efficient.

 * to using alert() to display debugging messages.
 **/

 if (!debug.box) {

[7] complex chunks of HTML text into a do The innerHTML property is particularly useful when you want to insert large or
simple fragments of HTML, using DOM methods is more efficient because no HTML pa

Example 17-7. Adding d
*

ebugging output to a document
/*
 * This debug function displays plain-text debugging messages in a
 * special box at the end of a document. It is a useful alternative

function debug(msg) {
 // If we haven't already created a box within which to display
 // our debugging messages, then do so now. Note that to avoid

 // using another global variable, we store the box node as
 // a proprty of this function.

 // Create a new <div> element
 debug.box = document.createElement("div");
 // Specify what it looks like using CSS style attributes

 "background-color: white; " +
 "font-family: monospace; " +
 "border: solid black 3px; " +

);

 // Append our new <div> element to the end of the document
 document.body.appendChild(debug.box);

ote that the innerHTML

but it is

 <h1>
ement,

 node to it, and
 // inserting it into the document, but this is a nice shortcut.

nter'>Debugging

ssage.

dd it to the

 debug.box.setAttribute("style",

 "padding: 10px;"

 // Now add a title to our <div>. N
property is
 // used to parse a fragment of HTML and insert it into the
document.
 // innerHTML is not part of the W3C DOM standard,
supported
 // by Netscape 6 and Internet Explorer 4 and later. We can
avoid
 // the use of innerHTML by explicitly creating the
el
 // setting its style attribute, adding a Text

 debug.box.innerHTML = "<h1 style='text-align:ce
Output</h1>";
 }

 // When we get here, debug.box refers to a <div> element into which
 // we can insert our debugging me
 // First create a <p> node to hold the message.

createElement("p"); var p = document.
 // Now create a text node containing the message, and a
<p>

)); p.appendChild(document.createTextNode(msg
 // And append the <p> node to the <div> that holds the debugging
output
 debug.box.appendChild(p);
}

The debug() method listed in Example 17-7 can be used in HTML documents like the
ocument that was used to generate following, which is the d Figure 17-4:

<script src="Debug.js"></script> <!-- Include the debug() function -

<script>var num

ess me</button>

->
times=0;</script> <!-- Define a global variable -->

<!-- Now use the debug() function in an event handler -->
<button onclick="debug('clicked: ' + numtimes++);">pr

17.2.5 Working with Document Fragments

The core DOM API defines the DocumentFragment object as a convenient way of
t is a special type of node

that does not appear in a document itself but serves as a temporary container for a
 single

ument (using any of the
() insertBefore() replaceChild() methods of the Node

cumentFragment itself that is inserted, but each of its children.

 an example, you can use a DocumentFragment to rewrite the reverse() method of
xample 17-3

working with groups of Document nodes. A DocumentFragmen

sequential collection of nodes and allows those nodes to be manipulated as a
object. When a DocumentFragment is inserted into a doc

 , , or appendChild
object), it is not the Do

As
E like this:

function reverse(n) { // Reverses the order of the children of Node n

Once you have created a DocumentFragment, you can use it with code like this:

document.getElementsByTagName("p")[0].appendChild(fragment);

Note that when you insert a DocumentFragment into a document, the child nodes of the
fragment are moved from the fragment into the document. After the insertion, the

 reused unless you first add new children to it. We'll see
ject again later in this chapter, when we examine the DOM

nts

ons showed how you can use the core DOM API to traverse, modify,
and add content to a document. Example 17-8

 var f = document.createDocumentFragment(); // Get an empty
DocumentFragment
 while(n.lastChild) // Loop backward through the
children,
 f.appendChild(n.lastChild); // moving each one to the
DocumentFragment
 n.appendChild(f); // Then move them back (in their
new order)
}

fragment is empty and cannot be
the DocumentFragment ob
Range API.

17.2.6 Example: A Dynamically Created Table of Conte

The previous secti
, at the end of this section, puts all these

pieces together into a single longer example. The example defines a single method,
maketoc(), which expects a Document node as its single argument. maketoc()
traverses the document, creates a table of contents (TOC) for it, and replaces the specified
node with the newly created TOC. The TOC is generated by looking for <h1>, <h2>,
<h3>, <h4>, <h5>, and <h6> tags within the document and assuming that these tags mark
the beginnings of important sections within the document. In addition to creating a TOC,
the maketoc() function inserts named anchors (<a> elements with the name attribute set
instead of the href attribute) before each section heading so that the TOC can link

directly to each section. Finally, maketoc() also inserts links at the beginning of each
section back to the TOC; when the reader reaches a new section, she can either read that
section or follow the link back to the TOC and choose a new section. Figure 17-5 shows
what a TOC generated by the maketoc() function looks like.

Figure 17-5. A dynamically created table of contents

If you maintain and revise long documents that are broken into sections with <h1>, <h2>,
and re

ult

 allows you

docume ke this one:

ript src="TOC.js"></script> <!-- Load the maketoc() function -->

ElementById('placeholder'))">
aced by the generated TOC -->

lated tags, the maketoc() function may be of interest to you. TOCs are quite
useful in long documents, but when you frequently revise a document it can be diffic
to keep the TOC in sync with the document itself. The TOC for this book was

 created by postprocessing the content of the book. automatically maketoc()
to do something similar for your web documents. You can use the function in an HTML

nt li

<sc
<!-- Call the maketoc() function when the document is fully loaded --
>
<body onload="maketoc(document.get
<!-- This span element will be repl
Table Of Contents

// ... rest of document goes here ...

Another way to use the maketoc() function is to generate the TOC only when
reader requests it. You can do this by including a link (or button) that replaces i

 the
tself with

;">Show Table Of

ode for the function follows. Example 17-8

the generated TOC when the user clicks on it:

<a href="#" onclick="maket
Contents

oc(this); return false

The c maketoc() is long, but it is well

)
funct ed
inside maketoc() itself. This prevents the addition of extra unnecessary functions to the

and insert the TOC

argument.
 **/

hat is the root of the TOC tree

d color and font for the TOC. We'll learn about

 // Start the TOC with an anchor so we can link back to it
 var anchor = document.createElement("a"); // Create an <a> node

t a name
t it

 Create a <table> element that will hold the TOC and add it
le = document.createElement("table");

 toc.appendChild(table);

 = document.createElement("tbody");

commented and uses techniques that have already been demonstrated. It is worth
studying as a practical example of the power of the DOM API. Note that the maketoc(

ion relies on two helper functions. For modularity, these helper functions are defin

global namespace.

Example 17-8. Automatically generating a table of contents
/**
 * Create a table of contents for this document,
into
 * the document by replacing the node specified by the replace

function maketoc(replace) {
 // Create a <div> element t
 var toc = document.createElement("div");

 // Set a backgroun
 // the style property in the next chapter.
 toc.style.backgroundColor = "white";

 toc.style.fontFamily = "sans-serif";

 anchor.setAttribute("name", "TOC"); // Give i
 // Inser toc.appendChild(anchor);

 // Make the body of the anchor the title of the TOC
 anchor.appendChild(document.createTextNode("Table Of Contents"));

 //
 var tab

 // Create a <tbody> element that holds the rows of the TOC
 var tbody
 table.appendChild(tbody);

 // Initialize an array that keeps track of section numbers
 var sectionNumbers = [0,0,0,0,0,0];

 // Recursively traverse the body of the document, looking for
sections
 // sections marked with <h1>, <h2>, ... tags, and use them to

e creat
 // the TOC by adding rows to the table
 addSections(document.body, tbody, sectionNumbers);

e

 replace.parentNode.replaceChild(toc, replace);

 // to build the table of contents by adding rows to the HTML table
specified
 // by the toc argument. It uses the sectionNumbers array to keep
track of
 // the current section number.
 // This function is defined inside of maketoc() so that it is not
 // visible from the outside. maketoc() is the only function
exported
 // by this JavaScript module.
 function addSections(n, toc, sectionNumbers) {
 // Loop through all the children of n
 for(var m = n.firstChild; m != null; m = m.nextSibling) {

t is H1-
H6.
 if ((m.nodeType == 1) && /* Node.ELEMENT_NODE */
 (m.tagName.length == 2) && (m.tagName.charAt(0) ==
"H")) {
 // Figure out what level heading it is
 var level = parseInt(m.tagName.charAt(1));
 if (!isNaN(level) && (level >= 1) && (level <= 6)) {
 // Increment the section number for this heading
level
 sectionNumbers[level-1]++;
 // And reset all lower heading-level numbers to
zero

 heading
levels

 for(var i = 0; i < level; i++) {
 sectionNumber += sectionNumbers[i];
 if (i < level-1) sectionNumber += ".";
 }

 // Finally, insert the TOC into the document by replacing the nod
 // specified by the replace argument with the TOC subtree

 // This method recursively traverses the tree rooted at Node n,
looking
 // looking for <h1> through <h6> tags, and uses the content of
these tags

 // Check whether m is a heading element. It would be nice
if we
 // could just use (m instanceof HTMLHeadingElement), but
this is
 // not required by the specification and it does not work
in IE.
 // Therefore, we must check the tagname to see if i

 for(var i = level; i < 6; i++) sectionNumbers[i] =
0;
 // Now combine section numbers for all

 // to produce a section number like "2.3.1"
 var sectionNumber = "";

 // Create an anchor to mark the beginning of this
section
 // This will be the target of a link we add to the

tents"));

 // Insert the anchor into the document right before

 n.insertBefore(anchor, m);

is section. It will be
added
 // to the TOC below.
 var link = document.createElement("a");
 link.setAttribute("href", "#SECT" + sectionNumber);
 // Get the heading text using a function defined
below
 var sectionTitle = getTextContent(m);
 // Use the heading text as the content of the link

link.appendChild(document.createTextNode(sectionTitle));

t.createElement("tr");

he

 // number in it
 col1.setAttribute("align", "right");

(link);
 // Add the columns to the row, and the row to the
table
 row.appendChild(col1);
 row.appendChild(col2);
 toc.appendChild(row);

 // Modify the section header element itself to add
 // the section number as part of the section title

m.insertBefore(document.createTextNode(sectionNumber+": "),
 m.firstChild);
 }

TOC
 var anchor = document.createElement("a");
 anchor.setAttribute("name", "SECT"+sectionNumber);

 // Create a link back to the TOC and make it a
 // child of the anchor
 var backlink = document.createElement("a");
 backlink.setAttribute("href", "#TOC");

backlink.appendChild(document.createTextNode("Con
 anchor.appendChild(backlink);

the
 // section header

 // Now create a link to th

 // Create a new row for the TOC
 var row = documen
 // Create two columns for the row
 var col1 = document.createElement("td");
 var col2 = document.createElement("td");
 // Make the first column right-aligned and put t
section

col1.appendChild(document.createTextNode(sectionNumber));
 // Put a link to the section in the second column
 col2.appendChild

 }
 else { // Otherwise, this is not a heading element, so
recurse
 addSections(m, toc, sectionNumbers);
 }
 }
 }

 // This utility function traverses Node n, returning the content of
 // all Text nodes found and discarding any HTML tags. This is also
 // defined as a nested function, so it is private to this module.
 function getTextContent(n) {
 var s = '';
 var children = n.childNodes;

Web browsers display HTML documents, but XML documents are becoming more and
more important as sources of data. Since the DOM allows us to traverse and manipulate
both HTML and XML documents, we can use DOM methods to load an XML document,
extract information from it, and dynamically create an HTML version of that information
for display in a web browser. Example 17-9

 for(var i = 0; i < children.length; i++) {
 var child = children[i];
 if (child.nodeType == 3 /*Node.TEXT_NODE*/) s +=
child.data;
 else s += getTextContent(child);
 }
 return s;
 }
}

17.2.7 Working with XML Documents

 shows how this can be done in Netscape 6.1
and Internet Explorer 6. It is an HTML file that consists mostly of JavaScript code. The
file expects to be loaded through a URL that uses the URL query string to specify the
relative URL of the data file to load. For example, you might invoke this example file
with a URL like this:

<employees>
 <employee name="J.
Doe"><job>Programmer</job><salary>32768</salary></employee>
 <employee name="A.
Baker"><job>Sales</job><salary>70000</salary></employee>
 <employee name="Big
Cheese"><job>CEO</job><salary>1000000</salary></employee>
</employees>

file://C:/javascript/DisplayEmployeeData.html?data.xml

DisplayEmployeeData.html is the name of the example file, and data.xml is the name of
the XML file it uses. The XML file must contain data formatted like this:

The example contains two JavaScript functions. The first, loadXML(), is a generic
function for loading any XML file. It contains standard DOM Level 2 code to load the
XML document and also code that uses a proprietary Microsoft API to accomplish the
same thing. The only really new thing in this example is the creation of a new Document
object with the DOMImplementation.createDocument() method and the call to the
load() method of that Document object. An important thing to notice here is that
documents do not load instantaneously, so the call to loadXML() returns before the
document is loaded. For this reason, we pass loadXML() a reference to another function
that it should call when the document has finished loading.

The other function in the example is makeTable(). This is the function that we pass to
loadXML(). When the XML file finishes loading, it passes the Document object
representing the XML file and the URL of the file to . uses

nd properties used in this function are all
straightforward, they are used in dense combinations. Study the code carefully and you

E
<head><title>Employee Data</title>
<script>
// This function loads the XML document from the specified URL and,
when
// it is fully loaded, passes that document and the URL to the

("Microsoft.XMLDOM"); // Create
doc

ldoc.readyState == 4) handler(xmldoc, url);

makeTable() makeTable()
DOM methods we've seen before to extract information from the XML document and
insert it into a table in the HTML document displayed by the browser. This function also
illustrates the use of some table-related convenience methods defined by
HTMLTableElement, HTMLTableRowElement, and related interfaces. See the DOM
reference section for complete details about these table-specific interfaces and their
methods. Although the DOM methods a

should have no difficulty understanding it.

xample 17-9. Loading and reading data from an XML document

specified
// handler function. This function works with any XML document.
function loadXML(url, handler) {
 // Use the standard DOM Level 2 technique, if it is supported
 if (document.implementation &&
document.implementation.createDocument) {
 // Create a new Document object
 var xmldoc = document.implementation.createDocument("", "",
null);
 // Specify what should happen when it finishes loading
 xmldoc.onload = function() { handler(xmldoc, url); }
 // And tell it what URL to load
 xmldoc.load(url);
 }
 // Otherwise, use Microsoft's proprietary API for Internet Explorer
 else if (window.ActiveXObject) {
 var xmldoc = new ActiveXObject

 xmldoc.onreadystatechange = function() { //
Specify onload
 if (xm
 }

 xmldoc.load(url); // Start
loading!
 }
}

// This function builds an HTML table of employees from data it read
from
// the XML document it is passed
function makeTable(xmldoc, url) {
 // Create a <table> object and insert it into the document
 var table = document.createElement("table");
 table.setAttribute("border", "1");
 document.body.appendChild(table);

 // Use convenience methods of HTMLTableElement and related
interfaces

s

 // to define a table caption and a header that gives a name to each
column
 var caption = "Employee Data from " + url;

;

 // Loop through these <employee> elements
 for(var i = 0; i < employees.length; i++) {
 // For each employee, get name, job, and salary data using
standard DOM
 // methods. The name comes from an attribute. The other values
are
 // in Text nodes within <job> and <salary> tags.
 var e = employees[i];
 var name = e.getAttribute("name");
 var job = e.getElementsByTagName("job")[0].firstChild.data;
 var salary =
e.getElementsByTagName("salary")[0].firstChild.data;

 // Now that we have the employee data, use methods of the table
to
 // create a new row and then use the methods of the row to
create
 // new cells containing the data as Text nodes
 var row = table.insertRow(i+1);
 row.insertCell(0).appendChild(document.createTextNode(name));
 row.insertCell(1).appendChild(document.createTextNode(job));
 row.insertCell(2).appendChild(document.createTextNode(salary));
 }
}

 table.createCaption(
).appendChild(document.createTextNode(caption));
 var header = table.createTHead();
 var headerrow = header.insertRow(0);

headerrow.insertCell(0).appendChild(document.createTextNode("Name"));

headerrow.insertCell(1).appendChild(document.createTextNode("Job"));

headerrow.insertCell(2).appendChild(document.createTextNode("Salary"))

 // Now find all <employee> elements in our xmldoc document
 var employees = xmldoc.getElementsByTagName("employee");

</script>
</head>
<!--
The body of the document contains no static text; everything is
dynamically
generated by the makeTable() function. The onload event handler
starts

g.

L file with a URL like this: DisplayEmployeeData.html?data.xml.

<body onload="loadXML(location.search.substring(1), makeTable)">

17.3 DOM Compatibility with Internet Explorer 4
Although IE 4 is not DOM-compliant, it has features that are similar to the core DOM
APIs. These features are not part of the DOM standard and are not compatible with
Netscape, but they are compatible with later versions of IE. The features are summarized
here; consult the client-side reference section of this book for more details.

17.3.1 Traversing a Document

The DOM standard specifies that all Node objects, which includes both the Document
object and all Element objects, have a childNodes[] array that contains the children of
that node. IE 4 does not support childNodes[], but it provides a very similar
children[] array on its Document and HTMLElement objects. Thus, it is easy to write a
recursive function like the one shown in Example 17-1

things off by calling loadXML() to load the XML data file. Note the
use of
location.search to encode the name of the XML file in the query strin
Load
this HTM
-->

</body>

 to traverse the complete set of
HTML elements within an IE 4 document.

There is one substantial difference between IE 4's children[] array and the standard

yId() getElementsByTagName()
cument object and all document elements have an

all[]
ent -- it represents all

DOM childNodes[] array, however. IE 4 does not have a Text node type and does not
consider strings of text to be children. Thus, a <p> tag that contains only plain text with
no markup has an empty children[] array in IE 4. As we'll see shortly, however, the
textual content of a <p> tag is available through the IE 4 innerText property.

17.3.2 Finding Document Elements

IE 4 does not support the getElementB and methods
of the Document object. Instead, the Do
array property named all[]. As the name suggests, this array represents all the elements
in a document or all the elements contained within another element. Note that does
not simply represent the children of the document or the elem
descendants, no matter how deeply nested.

The all[] array can be used in several ways. If you index it with an integer n, it returns
the n+1th element of the document or the parent element. For example:

var e1 = document.all[0]; // The first element of the document
var e2 = e1.all[4]; // The fifth element of element 1

Elements are numbered in the order in which they appear in the document source. Note
een the IE 4 API and the DOM standard: IE does not have a

otion of Text nodes, so the all[] array contains only document elements, not the text
that appears within them.

It is usually much more useful to be able to refer to document elements by name rather
t to getElementbyId() is to index the all[] array

with a string rather than a number. When you do this, IE 4 returns the element whose id
or name attribute has the specified value. If there is more than one such element (which
can happen, since it is common to have multiple form elements, such as radioboxes, with
the same name attribute), the result is an array of those elements. For example:

var specialParagraph = document.all["special"];
var radioboxes = form.all["shippingMethod"]; // May return an array

JavaScript also allows us to write these expressions by expressing the array index as a
property name:

var specialParagraph = document.all.special;
var radioboxes = form.all.shippingMethod;

Using the all[] array in this way provides the same basic functionality as
getElementById() and getElementsByName(). The main difference is that the all[]
array combines the features of these two methods, which can cause problems if you
inadvertently use the same values for the id and name attributes of unrelated elements.

The all[] array has an unusual quirk: a tags() method that can be used to obtain an
array of elements by tag name. For example:

var lists = document.all.tags("UL"); // Find all tags in the

as the DOM Document and
Element objects' getElementsByTagName() method. Note that in IE 4, the tag name

apital letters.

the one big difference betw
n

than number. The IE 4 equivalen

document
var items = lists[0].all.tags("LI"); // Find all tags in the
first

This IE 4 syntax provides essentially the same functionality

should be specified using all c

17.3.3 Modifying Documents

Like the DOM standard, IE 4 exposes the attributes of HTML tags as properties of the

 IE 4 by dynamically changing its HTML attributes. If an attribute
ws" to accommodate
te() , getAttribute(

removeAttribute() ilar to the methods of the

The DOM standard defines an API that makes it possible to create new nodes, insert

innerHTML
roperty. Setting this property to a string of HTML text allows you to replace the content

of an element with whatever you want. Because this innerHTML property is so powerful,
it has been implemented by Netscape 6 (and the Mozilla browser from which it is
derived), even though it is not part of the DOM standard. innerHTML was demonstrated
in Example 17-7

corresponding HTMLElement objects. Thus, it is possible to modify a document
displayed in
modification changes the size of any element, the document "reflo

ibuits new size. The IE 4 HTMLElement object defines setAttr
 methods as well. These are sim), and

same name defined by the Element object in the standard DOM API.

nodes into the document tree, reparent nodes, and move nodes within the tree. IE 4
not do this. Instead, however, all HTMLElement objects in IE 4 define an can

p

.

IE 4 also defines several related properties and methods. The outerHTML property
replaces an element's content and the entire element itself with a specified string of
HTML text. The innerText and outerText properties are similar to innerHTML and
outerHTML, except that they treat the string as plain text and do not parse it as HTML.
Finally, the insertAdjacentHTML() and insertAdjacentText() methods leave the
content of an element alone but insert new HTML or plain-text content near (before or
after, inside or outside) it. These properties and functions are not as commonly used as
innerHTML and have not been implemented by Netscape 6. For further details, see
"HTMLElement" in the client-side reference section.

.

nt content in

ictions, Netscape 4 does provide an API that allows access to and
anipulation of the crucial "dynamic elements" used to implement DHTML effects. In

 known as layers; they float above the rest of the
odified independently of the other elements

of the document. Layers are typically implemented using CSS style sheets, and the
Netscape 4 Layer API is discussed in detail in Chapter 18

17.4 DOM Compatibility with Netscape 4
Netscape 4 does not even come close to implementing the DOM standard. In particular,
Netscape 4 provides no way to access or set attributes on arbitrary elements of a
document. Netscape 4 supports the Level 0 DOM API, of course, so elements such as
forms and links can be accessed through the forms[] and links[] arrays, but there is no
general way to traverse the children of these elements or set arbitrary attributes on them
Furthermore, Netscape 4 does not have the ability to "reflow" docume
response to changes in element size.

espite these restrD
m
the Netscape 4 API, these elements are
document and can be moved, resized, and m

.

What follows is simply an overview that explains how you can create, access, and modify
the content of individual layer elements within a document. Although Netscape 4 does
not support anything like the DOM standard, its Layer API allows you to achieve some of
the same dynamic effects that are possible with the standard API. Note that the Layer API
was submitted to the W3C for consideration as part of the DOM standard, but no part of
this API was ever standardized. Because Netscape 6 is based on a complete rewrite of
Netscape 4, the Layer API has been abandoned and is not supported in Netscape 6 (or in
Mozilla).

Layers can be created in a document using the <layer> tag, a proprietary Netscape
extension to HTML. More commonly, however, you create a layer in a Netscape 4
document using standard CSS positioning attributes (which will be explained in detail in
Chapter 18). Any element made dynamic with CSS style attributes is treated as a layer by

ment is

Once you've created dynamic elements, or layers, in your document, Netscape 4 allows
he Level 0 DOM API. Just as you access

form elements through a forms[] array and image elements through an images[] array,
so do you access layers through a array of the Document object. If the first

nt
with any of the following expressions:

document.layers[0] // Index the array with a number
document.layers['layer1'] // Index the array with an element name
document.layer1 // Named layers become a document property

If a layer has no name attribute but has an id attribute, the value of this attribute is used as
the layer name instead.

Layers in your documents are represented by Layer objects that define a number of useful
properties and methods you can use to move, resize, show, hide, and set the stacking
order of the layer. These properties and methods are related to CSS style attributes and
will be discussed in Chapter 18

Netscape 4 and can be manipulated using the Layer API. (Note, though, that Netscape 4
does not allow all elements to be made dynamic. To be safe, a <div> wrapper ele
usually used around any element that is to be dynamic.) JavaScript can also dynamically
create layers using the Layer() constructor, which you can read about in the client-side
reference section of this book.

you to access them via a simple extension of t

layers[]
layer in a document has a name attribute of "layer1", you can refer to that layer eleme

. The most interesting thing about the Layer object is that
it contains a Document object of its own: the content of a layer is treated as an entirely
separate document from the document that contains the layer. This allows you to modify

ing

y

// The second layer nested within the layer named "mylayer"

the content displayed by a layer by dynamically rewriting the content of the layer us
the document.write() and document.close() methods. You can also dynamically
load documents into a layer using Layer's load() method. Finally, note that layers ma
themselves contain layers, and you can refer to such nested layers with expressions like
this:

document.mylayer.document.layers[1];

17.5 Convenience Methods: The Traversal and
Range APIs

ods
al

 chapters that follow.
Two of the optional modules are essentially convenience APIs built on top of the core

ed techniques for traversing a document and
filtering out nodes that are not of interest. The Range API defines methods for
manipulating contiguous ranges of document content, even when that content does not

the sections that follow. See the DOM reference section for complete documentation. The
etscape 6.1 (and partially implemented by Netscape 6),

and the Traversal API is expected to be fully supported by Mozilla 1.0, which means that
a future release of Netscape will support it. At the time of this writing, IE does not
support either of these APIs.

17.5.1 The DOM Traversal API

rs.

document.implementation.hasFeature("Traversal", 2.0) // True if

17.5.1.1 NodeIterator and TreeWalker

The Traversal API consists of two key objects, each of which provides a different filtered
view of a document. The NodeIterator object provides a "flattened" sequential view of
the nodes in a document and supports filtering. You could define a NodeIterator that
filters out all document content except tags and presents those image elements to
you as a list. The nextNode() and previousNode() methods of the Node-Iterator
object allow you to move forward and backward through the list. Note that NodeIterator
allows you to traverse selected parts of a document without recursion; you can simply use
a NodeIterator within a loop, calling nextNode() repeatedly until you find the node or
nodes in which you are interested, or until it returns null, indicating that it has reached
the end of the document.

So far in this chapter, we've discussed the core DOM API, which provides basic meth
for document traversal and manipulation. The DOM standard also defines other option
API modules, the most important of which will be discussed in the

API. The Traversal API defines advanc

begin or end at a node boundary. The Traversal and Range APIs are briefly introduced in

Range API is implemented by N

At the beginning of this chapter, we saw techniques for traversing the document tree by
recursively examining each node in turn. This is an important technique, but it is often
overkill; we do not typically want to examine every node of a document. We instead
might want to examine only the elements in a document, or to traverse only the
subtrees of <table> elements. The Traversal API provides advanced techniques for this
kind of selective document traversal. As noted previously, the Traversal API is optional
and, at the time of this writing, is not implemented in major sixth-generation browse
You can test whether it is supported by a DOM-compliant browser with the following:

supported

The other key object in the Traversal API is TreeWalker. This object also provides a
filtered view of a document and allows you to traverse the filtered document by calling
nextNode() and previousNode(), but it does not flatten the document tree.
TreeWalker retains the tree structure of the document (although this tree structure may be

alling nextNode() to
iterate through it, or when you want to perform a more sophisticated traversal, skipping,

.

The Document object defines createNodeIterator() and createTreeWalker()
ds for creating NodeIterator and TreeWalker objects. A practical way to check

is to test for the existence of these

if (document.createNodeIterator && document.createTreeWalker) {
 /* Safe to use Traversal API */
}

Both createNodeIterator() and createTreeWalker() are passed the same four
arguments and differ only in the type of object they return. The first argument is the node

the traversal. This option can be useful when you're working with XML documents, but
web programmers working with HTML documents can ignore it and pass false.

17.5.1.2 Filtering

One of the most important features of NodeIterator and TreeWalker is their selectivity,
their ability to filter out nodes you don't care about. As described previously, you specify
the nodes you are interested in with the second and (optionally) third arguments to
createNodeIterator() and createTreeWalker(). These arguments specify two
levels of filtering. The first level simply accepts or rejects nodes based on their type. The
NodeFilter object defines a numeric constant for each type of node, and you specify the
types of nodes you are interested in by adding together (or by using the | bitwise OR
operator on) the appropriate constants.

dramatically modified by node filtering) and allows you to navigate the tree with the
firstChild(), lastChild(), nextSibling(), previousSibling(), and
parentNode() methods. You would use a TreeWalker instead of a NodeIterator when
you want to traverse the filtered tree yourself, instead of simply c

for example, some subtrees

metho
whether a browser supports the Traversal API
methods:

at which the traversal is to begin. This should be the Document object if you want to
traverse or iterate through the entire document, or any other node if you want to traverse
only a subtree of the document. The second argument is a number that indicates the types
of nodes NodeIterator or TreeWalker should return. This argument is formed by taking
the sum of one or more of the SHOW_ constants defined by the NodeFilter object
(discussed in the next section). The third argument to both methods is an optional
function used to specify a more complex filter than simply including or rejecting nodes
based on their type (again, see the next section). The final argument is a boolean value
that specifies whether entity reference nodes in the document should be expanded during

For example, if you are interested in only the Element and Text nodes of a document, you
can use the following expression as the second argument:

NodeFilter.SHOW_ELEMENT + NodeFilter.SHOW_TEXT

f

NodeFilter.SHOW_ALL

If you are interested in only Element nodes, use:

NodeFilter.SHOW_ELEMENT

If you are interested in all nodes or do not want to reject any nodes simply on the basis o
their types, use the special constant:

And if you are interested in all types of nodes except for comments, use:

~NodeFilter.SHOW_COMMENT

(See Chapter 5 if you've forgotten the meaning of the ~ operator.) Note that this first level
of filtering applies to individual nodes but not to their children. If the second argument is

es you are interested in.

evel of
filtering. This second filter is implemented by a function you define and can therefore
perform arbitrarily complex filtering. If you do not need this kind of filtering, you can
simply specify null as the value of the third argument to create-NodeIterator() or
createTreeWalker(). But if you do want this kind of filtering, you must pass a
function as the third argument.

The function should expect a single node argument, and it should evaluate the node and
return a value that indicates whether the node should be filtered out. There are three
possible return values, defined by three NodeFilter constants. If your filter function
returns NodeFilter.FILTER_ACCEPT, the node is returned by the NodeIterator or
TreeWalker. If your function returns NodeFilter.FILTER_SKIP, the node is filtered out
and is not returned by the NodeIterator or TreeWalker. The children of the node are still
traversed, however. If you are working with a TreeWalker, your filter function may also
return the value NodeFilter.FILTER_REJECT, which specifies that the node should not
be returned and that it should not even be traversed.

NodeFilter.SHOW_TEXT, your NodeIterator or TreeWalker does not return element
nodes to you, but it does not discard them entirely; it still traverses the subtree beneath
the Element nodes to find the Text nod

Any nodes that pass this type-based filtration may be put through a second l

Example 17-10 demonstrates the creation and use of a NodeIterator and should clarify the
previous discussion. Note, however, that at the time of this writing none of the major web
browsers support the Traversal API, so this example is untested!

e

 but */ imgfilter,
 /* Unused in HTML documents */ false);

// Use the iterator to loop through all images and do something with
them
var image;
while((image = images.nextNode()) != null)
 image.style.visibility = "hidden"; // Process the image here

17.5.2 The DOM Range API

object represents a

Example 17-10. Creating and using a NodeIterator
// Define a NodeFilter function to accept only elements
function imgfilter(n) {
 if (n.tagName == 'IMG') return NodeFilter.FILTER_ACCEPT;
 else return NodeFilter.FILTER_SKIP;
}

// Create a NodeIterator to find tags
var images = document.createNodeIterator(document, // Traverse entir
document
 /* Look only at Element nodes */ NodeFilter.SHOW_ELEMENT,
 /* Filter out all

 {

}

The DOM Range API consists of a single inte
contiguous range

rface, Range. A Range
[8] of docum d between a specified start position and

ion. M at display text and documents allow the
on of th um t agging with the mouse. Such a selected

 co

ent content, containe
a specified end posit
user to select a porti

any applications th
e doc en by dr

portion of a document is nceptually equivalent to a range.[9] When a node of a docum
 often say that the node is "s

ent
 we elected," even though the Range

nythin e end user.
d pos range is

ed." In this case, th r insertion point

tiguous range. In bi ebrew, a logically contiguous range of a document may
 when displayed.

pically allow t nt content, the current DOM Level 2 standard does not make the contents of
those ranges available to JavaScript, so ther

ct provides nd end positions of a range,
copying and deleting the contents of a range, and inserting nodes at the start position of a
range. Support for the Rang ported
by Netscape 6.1. IE 5 supports a proprietary API that is similar to, but not compatible
with, the Range API. You c t for Range support with this code:

tree falls within a range,
object may not have a
When the start and en

g to do with a selection action initiated by th
itions of a range are the same, we say that the

"collaps e Range object represents a single position o
within a document.

[8] That is, a logically con
be visually discontiguous

directional languages such as Arabic and H

[9] Although web browsers ty he user to select docume
e is no standard way to obtain a Range object that corresponds to a user's desired selection.

methods for defining the start aThe Range obje

e API is optional. At the time of this writing, it is sup

an tes

document.implementation.hasFeature("Range", "2.0"); // True if Range
is supported

17.5.2.1 Start and end positions

The start and end positions of a range are each specified by two values. The first value is
a document node, typically a Doc ment, E ment, or Text object. The second value is a
number that represents a po
element, the number repres e children of the document or the
element. An offset of 0, for example, represents the position immediately before the first
child of the node. An offset of 1 represents the position after the first child and before the
second. When the specified text-based node type, such as
Comment), the number repr s on en the characters of text. An offset of
0 specifies the position before the first character of text, an offset of 1 specifies the

n the first a tart and end positions
 in this way, a rang or characters between the start and
tions. The real power of the Range e start and end positions

different no refore a range may span multiple
actional) Element an

monstrate the action o thods, I'm going to adopt
ation used in the DOM specification for illustrating the document content
nted by a range. Doc t contents are shown in the form of HTML source code,

contents of a range
s at position 0 wit

ment Tit

e a Range object, c

var r = document.createRange();

Newly created ranges have
Document object. Before yo

end positions to sp
can do this. The most gener
specify the start and end po

A higher-level technique fo r end position is to call
setStartBefore(), setStartAfter() ndBefore(), or setEndAfter().
These methods each take a single node as their argument. They set the start or end

on of the Range to the position before or after the specified node within the parent
of that node.

u le
sition within that node. When the node is a document or
ents a position between th

 node is a Text node (or another
esent a positi betwe

position betwee nd second characters, and so on. With s
specified
end posi

e represents all nodes and/
interface is that th

may fall within des of the document, and the
(and fr d Text nodes.

To de f the various range-manipulation me
the not
represe umen
with the
that begin

 in bold. For example, the following line represents a range
hin the <body> node and continues to position 8 within the

Text node contained within the <h1> node:

<body><h1>Docu

le</h1><body>

To creat all the createRange() method of the Document object:

both start and end points initialized to position 0 within the
u can do anything interesting with a range, you must set the
ecify the desired document range. There are several ways you
al way is to call the

start and
setStart() and setEnd() methods to

ints. Each is passed a node and a position within the node.

r setting a start and/o
, setE

positi

Finally, if you want to define a Range that represents a single Node or subtree of a
document, you can use the selectNode() or selectNodeContent() method. Both
methods take a single node argument. selectNode() sets the start and end positions
before and after the specified node within its parent, defining a range that includes the
node and all of its children.

e the first chi
after the last child of the node. The resulting range contains all the children of the

de, but not the n

17.5.2.2 Manipulating ra

Once you've defined a range, there are a number of interesting things you can do with it.
cument content within a range, simply call the deleteContents()

method of the Range object. When a range includes partially selected Text nodes, the
ky. Consider the following range:

>only</i>

After a call to deleteConte ortion of the document looks like this:

<i>ly</i> a tes

i> element was included (partially) in the Range, that element remains
 content) in t

 remove the c the
tent (for reinse paste operation, perhaps), you should use

) inste ents(). This method removes nodes from
d inser umentFragment (introduced earlier in this

. W es a partially selected node, that node
remains in the document tree and has its content modified as needed. A clone of the node
(see Node.cloneNode())

), the e nd
the returned DocumentFrag

n</i>

extractContents() work m the equivalent of a cut operation
on the document. If instead you want to do a copy operation and extract content without

he docume Contents() instead of extractContents(

selectNodeContent() sets the start of the range to the
ld of the node and sets the end of the range to the position position befor

specified no ode itself.

nges

To delete the do

deletion operation is a little tric

<p>This is <i

 a test

nts(), the affected p

<p>This t

Even though the <
(with modified he document tree after the deletion.

If you want to
extracted con

ontent of a range from a document but also want to save
rtion as part of a

extractContents(
the document tree an

ad of deleteCont
ts them into a Doc

chapter), which it returns hen a range includ

is made (and modified) to insert into the DocumentFragment.
ple again. If Consider the previous exam extractContents() is called instead of

ffect on the document is the same as shown previously, a
ment contains:

deleteContents(

is <i>o

s when you want to perfor

deleting it from t nt, use clone
).[10]

[10] Implementing word processor-style cut, copy, and paste operations is actually more complex than this. Simple range operations on a
complex document tree do not always produce the desired cut-and-paste behavior in the linear view of the document.

In addition to specifying the boundaries of text to be deleted or cloned, the start position
of a range can be used to indicate an insertion point within a document. The

) method of
d node is already part of the

ee, it is moved d reinserted at the position
he range. If th DocumentFragment, all the children of

seful method of the Range object is surroundContents(). This method
 the contents of a range to the specified node and inserts that node into the
t tree at the positio

dContents transform this range:

 test

 a

Note that because opening a
surroundContents() cannot be used (and will throw an exception) for ranges that

lly select any nodes o des. The range used earlier to illustrate the
eContents() method could not be used with surroundContents(), for

vario pare the boundaries of
ith compareBoundaryPoints(), clone a range with cloneRange(

range (not including any markup) with
). The start and through the read-only

es startContainer tainer, and endOffset. The start
ranges sh r somewhere in the document

en if it is the Docum tree. You can find out what this
on ancestor is with th e range.

r 18. ding Style Sheets
ami

le Sheets (CS specifying the visual presentation[1]

insertNode(a range inserts the specified node (and all of its children) into
the document at the start position
document tr

of the range. If the specifie
from its current location an

specified by t
the node are inserted instead of the node itself.

e specified node is a

Another u
reparents
documen n of the range. For example, by passing a newly created <i>
node to surroun (), you could

This is only a

into:

This is <i>only</i> test

nd closing tags must be properly nested in HTML files,

partia ther than Text no
delet
example.

The Range object has us other features as well. You can com
two different ranges w
), and extract a plain-text copy of the content of a
toString(end positions of a range are accessible
properti
and end points of all valid

, startOffset, endCon
are a common ancesto

ent object at the root of thetree, ev
comm e commonAncestorContainer property of th

Chapte Casca
and Dyn c HTML
Cascading Sty S) is a standard for of

en
ent, resisting tation to use deprecated HTML tags such as

HTML (or XML) docum
of your docum

ts. In theory, you use HTML markup to specify the structure
 the temp

to specify how the document should look. Instead, you use CSS to define a style sheet
that specifies how the structured elements of your document should be displayed. For
example, you can use CSS to specify that the level-one headings defined by <h1> tags
should be displayed in bold, sans-serif, centered, uppercase, 24-point letters.

, also the aural

 is a technology intende concerned with the
isplay of HT client-side JavaScript

programmers because the d
ts of a do

enable a variety of visual ef HTML (DHTML).[2]

[1] And, in the CSS2 standard presentation.

CSS d for use by graphic designers or anyone
precise visual d ML documents. It is of interest to

ocument object model allows the styles that are applied to the
cument to be scripted. Used together, CSS and JavaScript
fects loosely referred to as Dynamic

individual elemen

 effects also inv a qu hapter 19[2] Many advanced DHTML olve the event-h ndling techni es we'll see in C .

ity to script CSS sty ws you to dynamically change colors, fonts, and so
e importantly, it allows you to set and change the position of elements and even

 and show elements. e DHTML techniques to create
s where document content "slides in" from the right, for example, or

d collapsin ontrol the amount of
on that is displaye

This chapter begins with an overview of CSS style sheets and the use of CSS styles to
s

ets with CSS
Styles in CSS are specified as a semicolon-separated list of name/value attribute pairs,

The CSS standard defines quite a few style attributes you can set. Table 18-1

The abil
on. Mor

les allo

to hide This means that you can us
animated transition
an expanding an g outline list in which the user can c
informati d.

specify the position and visibility of document elements. It then explains how CSS style
can be scripted using the API defined by the DOM Level 2 standard. Finally, it
demonstrates the nonstandard, browser-specific APIs that can be used to achieve
DHTML effects in Netscape 4 and Internet Explorer 4.

18.1 Styles and Style She

where each name and value are separated by colons. For example, the following style
specifies bold, blue, underlined text:

font-weight: bold; color: blue; text-decoration: underline;

 lists all the
attributes except for those used only in audio style sheets. You are not expected to

SS,
eyer (O'Reilly), or

O'Reilly). Or read the
s /REC-CSS2/

understand or be familiar with all these attributes, their values, or their meanings. As you
become familiar with CSS and use it in your documents and scripts, however, you may
find this table a convenient quick reference. For more complete documentation on C
consult Cascading Style Sheets: The Definitive Guide, by Eric M
Dynamic HTML: The Definitive Guide, by Danny Goodman (
pecification itself -- you can find it at http://www.w3c.org/TR .

The second column of Table 18-1 shows the allowed values for each style attribute. It
uses the grammar used by the CSS specification. Items in fixed-width font are
keywords and should appear exactly as shown. Items in italics specify a data type such
a string or a length. Note that the

 as

e

Values separated by a are alternatives; you must specify exactly one. Values separated

[] are used for grouping values. An
asterisk (*) specifies that the previous value or group may appear zero or more times, a

es specify a number of repetitions. For example,
{ st be repeated twice, and {1,4} specifies that the
previous item must appear at least once and no more than four times. (This repetition

length type is a number followed by a units
specification such as px (for pixels). See a CSS reference for details on the other types.
Items that appear in italic fixed-width font represent the set of values allowed by
some other CSS attribute. In addition to the values shown in the table, each style attribut
may have the value "inherit", to specify that it should inherit the value from its parent.

|
by || are options; you must specify at least one, but you may specify more than one, and
they can appear in any order. Square brackets

plus sign (+) specifies that the previous value or group may appear one or more times,
and a question mark (?) specifies that the previous item is optional and may appear zero
or one time. Numbers within curly brac
2} specifies that the previous item mu

syntax may seem familiar: it is the same one used by JavaScript regular expressions,
discussed in Chapter 10.)

Table 18-1. CSS style attributes and their values

Name Values

background
r ||background-image ||background-

repeat || background-attachment ||background-
[background-colo

position]
background-
attachment scroll | fixed

background-color color | transparent

background-image url(url) | none

background-position [[percentage | length]{1,2} | [[top | center | bottom] ||
[left | center | right]]]

background-repeat repeat | repeat-x | repeat-y | no-repeat

border [border-width ||border-style || color]

border-collapse collapse | separate

border-color color{1,4} | transparent

border-spacing length length?

border-style [none | hidden | dotted | dashed | solid | double | groove |

Table 18-1. CSS style attributes and their values

Name Values

ridge | inset | outset]{1,4}
border-top border-
right border-bottom
border-left

[border-top-width ||border-top-style || color]

border-top-color
border-right-color
border-bottom-color

color

border-left-color

border-top-style
border-right-style
border-bottom-style
border-left-style

none | hidden | dotted | dashed | solid | double | groove
ridge

 |
 | inset | outset

border-top-width
border-right-width
border-bo ttom-width

medium thick

border-left-width

thin | | | length

border-width [thin | medium | thick | length]{1,4}

bottom length | percentage | auto

caption-side top | bottom | left | right

clear none | left | right | both

clip [rect([length | auto]{4})] | auto

color color

content [string | url(url) | counter | attr(attribute-name) | open-
quote | close-quote | no-open-quote | no-close-quote]+

counter-increment [identifier integer?]+ | none

counter-reset [identifier integer?]+ | none

cursor

[[url(url) ,]* [auto | crosshair | default | pointer |
move | e-resize | ne-resize | nw-resize | n-resize | se-
resize | sw-resize | s-resize | w-resize | text | wait
help

 |
]]

direction ltr rtl |

display

inline | block | list-item | run-in | compact | marker |
table | inline-table | table-row-group | table-header-
group | table-footer-group | table-row | table-column-
group | table-column | table-cell | table-caption | none

Table 18-1. CSS style attributes and their values

Name Values

empty-cells show | hide

float left | right | none

font
[[font-style || font-variant || font-weight]? font-
size [/ line-height]? font-family] | caption | icon |
menu | message-box | small-caption | status-bar

font-family [[family-name | serif | sans-serif | monospace | cursive |
fantasy],]+

font-size xx-small | x-small | small | medium | large | x-large | xx-
large | smaller | larger | length | percentage

font-size-adjust number | none

font-stretch
nsed | extra-

condensed | condensed | semi-condensed | semi-expanded
panded | extra-expanded | ultra-expanded

normal | wider | narrower | ultra-conde

| ex

font-style normal | italic | oblique

font-variant normal | small-caps

font-weight
| 600 | 700 | 800 | 900
normal | bold | bolder | lighter | 100 | 200 | 300 | 400 | 500

height length | percentage | auto

left length | percentage | auto

letter-spacing normal | length

line-height normal | number | length | percentage

list-style [list-style-type || list-style-position || list-
style-image]

list-style-image url(url) | none

list-style-position inside | outside

list-style-type
lower-roman | upper-roman | lower-greek | lower-alpha |

 | | | |

disc | circle | square | decimal | decimal-leading-zero |

upper-alpha upper-latin hebrew
orgian | cjk-ideographic | hiragana |
ragana-iroha | katakana-iroha | none

lower-latin
armenian | ge
katakana | hi

margin [length | percentage | auto]{1,4}

Table 18-1. CSS style attributes and their values

Name Values
margin-topmargin-
right margin-bottom length | percentage | auto
margin-left

marker-offset length | auto

marks [||] | none crop cross

max-height length | percentage | none

max-width length | percentage | none

min-height length | percentage

min-width length | percentage

orphans integer

outline [outline-color || outline-style || outline-width]

outline-color color | invert

outline-style none | hidden | dotted | dashed | solid | double | groove |
ridge | inset | outset

outline-width thin | medium | thick | length

overflow visible | hidden | scroll | auto

padding [length | percentage]{1,4}
padding-top

 padding-bottom
padding-

right
eft

length | percentage
padding-l

page identifier | auto

page-break-after auto | always | avoid | left | right

page-break-before auto | always | avoid | left | right

page-break-inside avoid | auto

position static | relative | absolute | fixed

quotes [string string]+ | none

right length | percentage | auto

size length{1,2} | auto | portrait | landscape

table-layout auto | fixed

Table 18-1. CSS style attributes and their values

Name es Valu

text-align left | right | center | justify | string

text-decoration none | [underline || overline || line-through || blink]

text-indent length | percentage

text-shadow none | [color || length length length? ,]* [color || length length
length?]

text-transform capitalize | uppercase | lowercase | none

top length | percentage | auto

unicode-bidi normal | embed | bidi-override

vertical-align baseline | sub | super | top | text-top | middle | bottom |
text-bottom | percentage | length

visibility visible | hidden | collapse

white- pspace normal | pre | nowra

widows integer

width length | percentage | auto

word-spacing normal | length

z-index auto | integer

The CS
combin
font-style, and font-weight attributes can all be set at once using a single font
attribute:

font: bold italic 24pt helvetica;

In fact,

S standard allows certain style attributes that are commonly used together to be
ed using special shortcut attributes. For example, the font-family, font-size,

 some of the attributes listed in Table 18-1 are themselves shortcuts. The margin
and pa
borders
attribut
and sim

dding attributes are shortcuts for attributes that specify margins, padding, and
 for each of the individual sides of an element. Thus, instead of using the margin
e, you can use margin-left, margin-right, margin-top, and margin-bottom,
ilarly for padding.

18.1.1

You ca
way is
margin

<p style="margin-left: 1in; margin-right: 1in;">

One of the important goals of CSS is to separate document content and structure from
document presentation. Specifying styles with the style attribute of individual HTML
tags does not accomplish this (although it can be a useful technique for DHTML). To
achieve the separation of structure from presentation, we use style sheets, which group all
the style information into a single place. A CSS style sheet consists of a set of style rules.
Each rule begins with a selector that specifies the document element or elements to which
it applies, followed by a set of style attributes and their values within curly braces. The
simplest kind of rule defines styles for one or more specific tag names. For example, the
following rule sets the margins and background color for the <body> tag:

r: #ffffff
}

The following rule specifies that text within <h1> and <h2> headings should be centered:

h1, h2 { text-align: center; }

In the previous example, note the use of a comma to separate the tag names to which the
styles are to apply. If the comma is omitted, the selector specifies a contextual rule that
applies only when one tag is nested within another. For example, the following rules

Another kind of style sheet rule uses a different selector to specify a class of elements to
t is defined by the class

ttribute of the HTML tag. For example, the following rule specifies that any tag with the

 Applying Style Rules to Document Elements

n apply style attributes to the elements of a document in a number of ways. One
to use them in the style attribute of an HTML tag. For example, to set the
s of an individual paragraph, you can use a tag like this:

body { margin-left: 30px; margin-right: 15px; background-colo

specify that <blockquote> tags are displayed in an italic font, but text inside an <i> tag
inside a <blockquote> is displayed in plain, nonitalic text:

blockquote { font-style: italic; }
blockquote i { font-style: normal; }

which its styles should be applied. The class of an elemen
a
attribute class="attention" should be displayed in bold:

.attention { font-weight: bold; }

Class selectors can be combined with tag name selectors. The following rule specifies
that when a <p> tag has the class="attention" attribute, it should be displayed in red,
in addition to being displayed in a bold font (as specified by the previous rule):

id attribute. The following rule specifies that the element with an id attribute

#p1 { visibility: hidden; }

e value
ble, causing the element to

dynamically appear.

le> tags within the <head> of the document, or you can store the
k>

nked
 also define inline styles for

f rules for determining which rules from
de take precedence over the other rules. Briefly, however, what you need to

now is that the user style sheet overrides the default browser style sheet, author style
sheets override the user style sheet, and inline styles override everything. The exception
to this general rule is that user style attributes whose values include the !important

p.attention { color: red; }

Finally, style sheets can contain rules that apply only to individual elements that have a
specified
equal to "p1" should not be shown:

We've seen the id attribute before: it is used with the DOM function getElementById(
) to return individual elements of a document. As you might imagine, this kind of
element-specific style sheet rule is useful when we want to manipulate the style of an
individual element. Given the previous rule, for example, a script might switch th
of the visibility attribute from hidden to visi

18.1.2 Associating Style Sheets with Documents

You can incorporate a style sheet into an HTML document by placing it between
<style> and </sty
style sheet in a file of its own and reference it from the HTML document using a <lin
tag. You can also combine these two techniques by creating a document-specific style
sheet between <style> tags that references or imports a document-independent style
sheet using the special @import "at-rule." Consult a CSS reference for details on
@import.

18.1.3 The Cascade

Recall that the C in CSS stands for "cascading." This term indicates that the style rules
that apply to any given element in a document can come from a cascade of different
sources. Each web browser typically has its own default styles for all HTML elements
and may allow the user to override these defaults with a user style sheet. The author of a
document can define style sheets within <style> tags or in external files that are li
in or imported into other style sheets. The author may
individual elements with the HTML style attribute.

The CSS specification includes a complete set o
the casca
k

modifier override author styles. Within a style sheet, if more than one rule applies to an
element, styles defined by the most specific rule override conflicting styles defined by
less specific rules. Rules that specify an element id are the most specific. Rules that
specify a class are next. Rules that specify only tag names are the least specific, but
rules that specify multiple nested tag names are more specific than rules that specify only
a single tag name.

18.1.4 Versions of CSS

At the time of this writing, there are two versions of the CSS standard. CSS1 was adopted
in December, 1996 and defines attributes for specifying colors, fonts, margins, borders,
and other basic styles. Netscape 4 and Internet Explorer 4 both implement at least partial
support for CSS1. The second edition of the standard, CSS2, was adopted in May, 1998;
it defines a number of more advanced features, most notably support for absolute

positioning of elements. The advanced features of CSS2 are supported only in sixth-
generation browsers. Fortunately, however, the crucial positioning features of CSS2
began the standardization process as part of a separate CSS-Positioning (CSS-P) effort,
and therefore some of these DHTML-enabling features are available in fourth-generation
browsers. Work continues on a third edition of the CSS standard. You can find the CSS
specifications and working drafts at http://www.w3.org/Style/CSS/.

18.1.5 CSS Example

Example 18-1 is an HTML file that defines and uses a style sheet. It demonstrates the
previously described tag name, class, and ID-based style rules, and it also has an example
of
only as an overview of CSS synt verage of CSS is beyond the
scope of this book.

Example 18-1. Defining and using Cascading Style Sheets
<head>
<style type="text/css">
/* Specify that headings display in blue italic text. */
h1, h2 { color: blue; font-style: italic }

/*
 * Any element of class="WARNING" displays in big bold text with large
margins
 * and a yellow background with a fat red border.
 */

an inline style defined with the style attribute. Remember that this example is meant
ax and capabilities. Full co

.WARNING {
 font-weight: bold;
 font-size: 150%;
 margin: 0 1in 0 1in; /* top right bottom left */
 background-color: yellow;
 border: solid red 8px;
 padding: 10px; /* 10 pixels on all 4 sides */
}

/*
 * Text within an h1 or h2 heading within an element with
class="WARNING"

ng in blue italic * should be centered, in addition to appeari s.
 */
.WARNING h1, .WARNING h2 { text-align: center }

<body>
<h1>Cascading Style Sheets Demo</h1>

<div class="WARNING">
<h2>Warning</h2>
This is a warning!
Notice how it grabs your attention with its bold text and bright
colors.
Also notice that the heading is centered and in blue italics.
</div>

<p id="P23">
This paragraph is centered

and appears in uppercase letters.

Here we explicitly use an inline style to override the uppercase
letters.

</p>
</body>

18.2 Element Positioning with CSS
For DHTML content developers, the most important feature of CSS is the ability to use
ordinary CSS style attributes to specify the visibility, size, and precise position of
individual elements of a document. In order to do DHTML programming, it is important
to understand how these style attributes work. They are summarized in Table 18-2

/* The single element with id="P23" displays in centered uppercase. */
#P23 {
 text-align: center;
 text-transform: uppercase;
}
</style>
</head>

 and
documented in more detail in the sections that follow.

Table 18-2. CSS positioning and visibility attributes

Attribute(s) Description

position Specifies the type of positioning applied to an element

top, left Specifies the position of the top and left edges of an element

bottom, m and right edges of an element Specifies the position of the botto

Table 18-2. CSS positioning and visibility attributes

Attribute(s) Description
right

width,
height

Specifies the size of an element

z-index Specifies the "stacking order" of an element relative to any overlapping
elements; defines a third dimension of element positioning

display Specifies how and whether an element is displayed

visibility Specifies whether an element is visible

clip Defines a "clipping region" for an element; only portions of the element
within this region are displayed

overflow Specifies what to do if an element is bigger than the space allotted for it

18.2.1 The Key to DHTML: The position Attribute

The CSS position attribute specifies the type of positioning applied to an element. The
four possible values for this attribute are:

static

This is the default value and specifies that the element is positioned according to

right and top to bottom.) Statically positioned elements are not DHTML elements
and cannot be positioned with the top, left, and other attributes. To use DHTML
positioning techniques with a document element, you must first set its position

containing element. Absolutely positioned elements are positioned independently
ll other elements and are not part of the flow of statically positioned elements.
absolutely positioned element is positioned either relative to the <body> of the

document or, if it is nested within another absolutely positioned element, relative
to that element. This is the most commonly used positioning type for DHTML.

fixed

the normal flow of document content (for most Western languages, this is left to

attribute to one of the other three values.

absolute

This value allows you to specify the position of an element relative to its

of a
An

This value allows you to specify an element's position with respect to the browser
window. Elements with fixed positioning do not scroll with the rest of the

ll others and are
not part of the document flow. Fixed positioning is a CSS2 feature and is not
supported by fourth-generation browsers. (It is supported in Netscape 6 and IE 5

 the Macintosh, but it is not supported by IE 5 or IE 6 for Windows).

relat

tion is then adjusted relative to its position in the
normal flow. The space allocated for the element in the normal document flow
remains allocated for it, and the elements on either side of it do not close up to fill
in that space, nor are they "pushed away" from the new position of the element.
Relative positioning can be useful for some static graphic design purposes, but it
is not commonly used for DHTML effects.

18.2.2 Specifying the Position and Size of Elements

Once you have set the position attribute of an element to something other than static,
you can specify the position of that element with some combination of the left , top,
right, and bottom attributes. The most common positioning technique is to specify the
left and top attributes, which specify the distance from the left edge of the containing
element (usually the document itself) to the left edge of the element, and the distance
from the top edge of the container to the top edge of the element. For example, to place
an element 100 pixels from the left and 100 pixels from the top of the document, you can
specify CSS styles in a style attribute as follows:

<div style="position: absolute; left: 100px; top: 100px;">

The containing element relative to which a dynamic element is positioned is not
necessarily the same as the containing element within which the element is defined in the
document source. Since dynamic elements are not part of normal element flow, their
positions are not specified relative to the static container element within which they are
defined. Most dynamic elements are positioned relative to the document (the <body> tag)
itself. The exception is dynamic elements that are defined within other dynamic elements.

ent
om to specify the position of the

bottom and right edges of an element relative to the bottom and right edges of the
containing element. For example, to position an element so that its bottom-right corner is

document and thus can be used to achieve frame-like effects. Like absolutely
positioned elements, fixed-position elements are independent of a

for

ive

When the position attribute is set to relative, an element is laid out according
to the normal flow, and its posi

In this case, the nested dynamic element is positioned relative to its nearest dynamic
ancestor.

Although it is most common to specify the position of the upper-left corner of an elem
with left and top, you can also use right and bott

at the bottom-right of the document (assuming it is not nested within another dynamic
element), use the following styles:

position: absolute; right: 0px; bottom: 0px;

To position an el
right e

ement so that its top edge is 10 pixels from the top of the window and its
dge is 10 pixels from the right of the window, you can use these styles:

osition: fixed; right: 10px; top: 10px;

 additions to the CSS standard and
are not supported by fourth-generation browsers, as top and left are.

In addition to the position of elements, CSS allows you to specify their size. This is most

tent.

 blue">

</div>

Another way to specify the width of an element is to specify a value for both the left
and right attributes. Similarly, you can specify the height of an element by specifying
both top and bottom. If you specify a value for left, right, and width, however, the
width attribute overrides the right attribute; if the height of an element is over-
constrained, height takes priority over bottom.

Bear in mind that it is not necessary to specify the size of every dynamic element. Some
elements, such as images, have an intrinsic size. Furthermore, for dynamic elements that
contain text or other flowed content, it is often sufficient to specify the desired width of
the element and allow the height to be determined automatically by the layout of the
element's content.

In the previous positioning examples, values for the position and size attributes were
specified with the suffix "px". This stands for pixels. The CSS standard allows
measurements to be done in a number of other units, including inches ("in"), centimeters
("cm"), points ("pt"), and ems ("em" -- a measure of the line height for the current font).
Pixel units are most commonly used with DHTML programming. Note that the CSS
standard requires a unit to be specified. Some browsers may assume pixels if you omit

e unit specification, but you should not rely on this behavior.

p

Note that the right and bottom attributes are newer

commonly done by providing values for the width and height style attributes. For
example, the following HTML creates an absolutely positioned element with no con
Its width, height, and background-color attributes make it appear as a small blue
square:

<div style="position: absolute; left: 10px; right: 10px;
 width: 10px; height: 10px; background-color:

th

Instead of specifying absolute positions and sizes using the units shown above, CSS also
ion and size of an element as a percentage of the size of the

 border: 2px solid black">

tom, and height attributes work. First, width and height specify the size of an

er widths to

t

ent

mically
hild to

of

allows you to specify the posit
containing element. For example, the following HTML creates an empty element with a
black border that is half as wide and half as high as the containing element (or the
browser window) and centered within that element:

<div style="position: absolute; left: 25%; top: 25%; width: 50%;
height: 50%;

</div>

18.2.2.1 Element size and position details

It is important to understand some details about how the left , right, width, top,
bot
element's content area only; they do not include any additional space required for the
element's padding, border, or margins. To determine the full onscreen size of an element
with a border, you must add the left and right padding and left and right bord
the element width, and you must add the top and bottom padding and top and bottom
border widths to the element's height.

Since width and height specify the element content area only, you might think that lef
and top (and right and bottom) would be measured relative to the content area of the
containing element. In fact, the CSS standard specifies that these values are measured
relative to the outside edge of the containing element's padding (which is the same as the
inside edge of the element's border).

Let's consider an example to make this clearer. Suppose you've created a dynamically
positioned container element that has 10 pixels of padding all the way around its cont
area and a 5 pixel border all the way around the padding. Now suppose you dyna
position a child element inside this container. If you set the left attribute of the c
"0 px", you'll discover that the child is positioned with its left edge right up against the
inner edge of the container's border. With this setting, the child overlaps the container's
padding, which presumably was supposed to remain empty (since that is the purpose
padding). If you want to position the child element in the upper left corner of the
container's content area, you should set both the left and top attributes to "10px".
Figure 18-1 helps to clarify this.

Figure 18-1. Dynamically positioned container and child elements with
some CSS attributes

Now that you understand that width and height specify the size of an element's content
rea only and that the left, top, right, and bottom attributes are measured relative to

the containing element's padding, there is one more detail you must be aware of: Internet

 (but
a

ent

e CSS position and size attributes work correctly when the browser is in
standards mode and incorrectly (but compatibly with earlier versions) when the browser
is in compatibility mode. Standards mode, and hence correct implementation of the CSS
"box model," is triggered by the presence of a <!DOCTYPE> tag at the start of the
document, declaring that the document adheres to the HTML 4.0 (or later) standard or
some version of the XHTML standards. For example, any of the following three HTML
document type declarations cause IE 6 to display documents in standards mode:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Strict//EN">
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">

Netscape 6 and the Mozilla browser handle the width and height attributes correctly.
But these browsers also have standards and compatibility modes, just as IE does. The
absence of a <!DOCTYPE> declaration puts the Netscape browser in quirks mode, in which
it mimics certain (relatively minor) nonstandard layout behaviors of Netscape 4. The
presence of <!DOCTYPE> causes the browser to break compatibility with Netscape 4 and
correctly implement the standards.

a

Explorer Versions 4 through 5.5 for Windows (but not IE 5 for the Mac) implement the
width and height attributes incorrectly and include an element's border and padding
not its margins). For example, if you set the width of an element to 100 pixels and place
10-pixel margin and a 5-pixel border on the left and right, the content area of the elem
ends up being only 70 pixels wide in these buggy versions of Internet Explorer.

In IE 6, th

18.2.3 The Third Dimension: z-index

We've seen that the left, top, right, and bottom attributes can be used to specify the
and Y coordinates of an element within the two-dimensional pla

X
ne of the containing

element. The attribute defines a kind of third dimension: it allows you to specify
s

overlapping elements have the same z-index, they are

drawn in the order in which they appear in the document, so the last overlapping element

 their
ne is on top. Instead,

positioned elements are always laid out in a way that prevents overlaps, so the z-
index attribute does not apply to them. Nevertheless, they have a default z-index of

ther
s such as <select> drop-down menus. Fourth-generation browsers

may display all form-control elements on top of absolutely positioned elements,
regardless of z-index settings.

S attributes you can use to affect the visibility of a document element:
is simple: when the attribute is set

t t is set to the value visible, the
element is shown. The display attribute is more general and is used to specify the type

z-index
the stacking order of elements and indicate which of two or more overlapping elements i

. The z-index attribute is an integer. The default value is zero,drawn on top of the others
but you may specify positive or negative values (although fourth-generation browsers
may not support negative values). When two or more elements overlap, they are z-index
drawn in order from lowest to highest z-index; the element with the highest z-index
appears on top of all the others. If

appears on top.

Note that z-index stacking applies only to sibling elements (i.e., elements that are
children of the same container). If two elements that are not siblings overlap, setting
individual z-index attributes does not allow you to specify which o
you must specify the z-index attribute for the two sibling containers of the two
overlapping elements.

Non

zero, which means that positioned elements with a positive z-index appear on top of the
normal document flow, and positioned elements with a negative z-index appear beneath
the normal document flow.

Note, finally, that some browsers do not honor the z-index attribute when it is applied to
<iframe> tags, and you may find that inline frames float on top of other elements,
regardless of the specified stacking order. You may have the same problem with o
"windowed" element

18.2.4 Element Display and Visibility

There are two CS
visibility and display. The visibility attribute
o the value hidden, the element is not shown; when i

of display an item receives. It specifies whether an element is a block element, an inline
element, a list item, and so on. When display is set to none, however, the affected
element is not displayed, or even laid out, at all.

The difference between the visibility and display style attributes has to do with their
effect on elements that are not dynamically positioned. For an element that appears in the

normal layout flow (with the position attribute set to static or relative), setting
visibility to none makes the element invisible but reserves space for it in the
document layout. Such an element can be repeatedly hidden and shown without changing

Note that it doesn't make much sense to use visibility or display to make an element
invisible unless you are going to use JavaScript to dynamically set these attributes and
make the element visible at some point![3]

the document layout. If an element's display attribute is set to none, however, no space
is allocated for it in the document layout; elements on either side of it close up as if it
were not there. (visibility and display have equivalent effects when used with
absolute- or fixed-position elements, since these elements are never part of the document
layout anyway.) You'll typically use the visibility attribute when you are working
with dynamically positioned elements. The display attribute is useful when creating
things like expanding and collapsing outlines.

 You'll see how you can do this later in the

 There is an exception: if you are creating a document that depends on CSS, you can s of browsers that do not support CSS with

18.2.5 Partial Visibility: overflow and clip

lity
overflow clip attributes allow you to display only part of an element. The

ens when the content of an element exceeds the
yle attributes, for example) for the element.

ttribute are as follows:

visible

Content may overflow and be drawn outside of the element's box if necessary.

er drawn
outside the region defined by the size and positioning attributes.

ermanent horizontal and vertical scrollbars. If the content
ox, the scrollbars allow the user to scroll to view the extra

content. This value is honored only when the document is displayed on a
computer screen; when the document is printed on paper, for example, scrollbars
obviously do not make sense.

chapter.

[3] warn user
code like this:

The visibi attribute allows you to completely hide a document element. The
 and

overflow attribute specifies what happ
size specified (with the width and height st
The allowed values and their meanings for this a

This is the default.

hidden

Content that overflows is clipped and hidden so that no content is ev

scroll

The element's box has p
exceeds the size of the b

auto

Scrollbars are displayed only when content exceeds the element's size, rather than
being permanently displayed.

While the overflow property allows you to specify what happens when an element's
content is bigger than the element's box, the clip property allows you to specify exactly
which portion of an element should be displayed, whether or not the element overflows.

rsions of the standard will support clipping shapes other than

ect(top right bottom left)

This attribute is especially useful for scripted DHTML effects in which an element is
progressively displayed or uncovered.

The value of the clip property specifies the clipping region for the element. In CSS2
clipping regions are rectangular, but the syntax of the clip attribute leaves open the
possibility that future ve
rectangles. The syntax of the clip attribute is:

r

The top, right, bottom, and left values specify the boundaries of the clipping
rectangle relative to the upper-left corner of the element's box.[4] For example, to display
only a 100 x 100-pixel portion of an element, you can give that element this style
attribute:

[4] As the CSS2 specification was originally written, these four values specified the offset of the edges of the clipping region from each of the
corresponding edges of the element's box. All major browser implementations got it wrong, however, and interpreted the right and
bottom values as offsets from the left and top edges. Because the implementations consistently disagree with the specification, the
specification is being modified to match the implementations.

els. Percentages are not allowed. Values may be
negative to specify that the clipping region extends beyond the box specified for the

pecify that
 element's

ox. For example, you can display just the leftmost 100 pixels of an element with this

;"

and the edges of the clipping region
re specified in clockwise order from the top edge.

style="clip: rect(0px 100px 100px 0px);"

Note that the four values within the parentheses are length values and must include a unit
specification, such as "px" for pix

element. You may also use the keyword auto for any of the four values to s
hat edge of the clipping region is the same as the corresponding edge of thet

b
style attribute:

style="clip: rect(auto 100px auto auto)

Note that there are no commas between the values,
a

18.2.6 CSS Positioning Example

Example 18-2 is a nontrivial example using CSS style sheets and CSS positioning
attributes. When this HTML document is displayed in a CSS-compliant browser, it
creates the visual effect of "subwindows" within the browser window. Figure 18-2 shows
the effect created by the code in Example 18-2. Although the listing contains no
JavaScript code, it is a useful demonstration of the powerful effects that can be achieved
with CSS in general and the CSS positioning attributes in particular.

Figure 18-2. Windows created with CSS

Example 18-2. Displaying windows with CSS
<head>
<style type="text/css">
/**
 * This is a CSS style sheet that defines three style rules that we use
 * in the body of the document to create a "window" visual effect.
 * The rules use positioning attributes to set the overall size of the
window
 * and the position of its components. Changing the size of the window
 * requires careful changes to positioning attributes in all three
rules.
 **/
div.window { /* Specifies size and border of the window */
 position: absolute; /* The position is specified
elsewhere */
 width: 300px; height: 200px; /* Window size, not including
borders */
 border: outset gray 3px; /* Note 3D "outset" border effect */

}

ebar { /* Specifies position, size, and style of the titlebar

* It's a positioned element */
bar is 18px + padding and borders

: 290px; /* 290 + 5px padding on left and right =

olor */
n bottom

, bottom,

aption; /* Use system font for titlebar */

div.content { /* Specifies size, position and scrolling for window
content */
 position: absolute; /* It's a positioned element */
 top: 25px; /* 18 x title+2px border+3px+2px
adding */

 - 25px titlebar - 10px

idth: 290px; /* 300px width - 10px of padding */
 /* Allow space on all four sides */

 and

op: 10px; z-index: 10;">

s of lines

nt position, color, and font

div.titl
*/
 position: absolute; /
 top: 0px; height: 18px; /* Title
*/

th wid
300 */
 background-color: ActiveCaption; /* Use system titlebar c
 border-bottom: groove black 2px; /* Titlebar has border o
only */

ckwise: top, right padding: 3px 5px 2px 5px; /* Values clo
left */
 font: c
 }

p

p

 height: 165px; /* 200px total
padding */
 w
 padding: 5px;
 overflow: auto; /* Give us scrollbars if we need them
*/
 background-color: #ffffff; /* White background by default */
}
</style>
</head>

<body>
<!-- Here is how we define a window: a "window" div with a titlebar
-->
<!-- content div nested between them. Note how position is specified
with -->
<!-- a style attribute that augments the styles from the style sheet. -
->

 class="window" style="left: 10px; t<div
<div class="titlebar">Test Window</div>
<div class="content">
1
2
3
4
5
6
7
8
9
0
 <!-- Lot
to -->

2
3
4
5
6
7
8
9
0
 <!-- demonstrate 1

scrolling -->
</div>
</div>

<!-- Here's another window with differe

t --> weigh
<div class="window" style="left: 170px; top: 140px; z-index: 20;">
<div class="titlebar">Another Window</div>

ont-<div class="content" style="background-color:#d0d0d0; f
weight:bold;">

This is another window. Its <tt>z-index</tt> puts it on top of the
other one.
</div>
</div>
</body>

The major shortcoming of this example is that the style sheet specifies a fixed size for all

equires changing
le sheet.

e
xt

 standard
akes this quite easy to do. In Chapter 17

windows. Because the titlebar and content portions of the window must be precisely
a window rpositioned within the overall window, changing the size of

the value of various positioning attributes in all three rules defined by the sty
This is difficult to do in a static HTML document, but it would not be so difficult if w
could use a script to set all of the necessary attributes. We'll explore this topic in the ne
section.

18.3 Scripting Styles
The crux of DHTML is the ability to use JavaScript to dynamically change the
attributes applied to individual elements within a document. The DOM Level 2

efines an API that m

 style

d , we saw how to use the
ents either by tag name or ID or by

e
ty to

. This JavaScript object has

style
roperties returns the CSS attribute value, if any,

..
t!

DOM API to obtain references to document elem
recursively traversing the entire document. Once you've obtained a reference to th
element whose styles you want to manipulate, you use the element's style proper
obtain a CSS2Properties object for that document element
JavaScript properties corresponding to each of the CSS1 and CSS2 style attributes.
Setting these properties has the same effect as setting the corresponding styles in a

tribute on the element. Reading these pat
that was set in the style attribute of the element. It is important to understand that the

erty of an element specifies only CSS2Properties object you obtain with the style prop
the inline styles of the element. You cannot use the properties of the CSS2Properties
object to obtain information about the style-sheet styles that apply to the element. By
setting properties on this object, you are defining inline styles that effectively override
style-sheet styles.

Consider the following script, for example. It finds all elements in the document
and loops through them looking for ones that appear (based on their size) to be banner
advertisements. When it finds an ad, it uses the style.visibility property to set the
CSS visibility attribute to hidden, making the ad invisible:

var imgs = document.getElementsByTagName("img"); // Find all images
for(var i = 0; i < imgs.length; i++) { // Loop through them
 var img=imgs[i];

 (img.width == 468 && img.height == 60) // If it's a 468x60 if
nner.ba

 img.style.visibility = "hidden"; // hide i
}

I've transformed this simple script into a "bookmarklet" by converting it to a
javascript: URL and

ng the bookmarklet
 bookmarking it in my browser. I take subversive pleasure in

to immediately hide distracting animated ads that won't stop
mating. Here's a version of the script suitable for bookmarking:

javascript:a=document.getElementsByTagName("img");for(n=0;n<a.length;n+
+){
i=a[n];if(i.width==468&&i.height==60)i.style.visibility="hidden";}void
0;

The bookmarklet is written with very compact code and is intended to be formatted on a
single line. The javascript: at the beginning of this bookmarklet identifies it as a URL
whose body is a string of executable content. The void 0 statement at the end causes the
code to return an undefined value, which means that the browser continues to display the
current web page (minus its banner ads, of course!). Without the , the browser

htly different
tains one or more
the hyphens and

" is a keyword in Java and other languages,
and although it is not currently used in JavaScript, it is reserved for possible future use.
Therefore, the CSS2Properties object cannot have a property named float to correspond
to the CSS float attribute. The solution to this problem is to prefix the float attribute
with the string "css" to form the property name cssFloat. Thus, to set or query the value
of the float attribute of an element, use the cssFloat property of the CSS2Properties
object.

usi
ian

void 0
would overwrite the current web page with the return value of the last JavaScript
statement executed.

18.3.1 Naming Conventions: CSS Attributes in JavaScript

Many CSS style attributes, such as font-family, contain hyphens in their names. In
JavaScript, a hyphen is interpreted as a minus sign, so it is not possible to write an
expression like:

element.style.font-family = "sans-serif";

Therefore, the names of the properties of the CSS2Properties object are slig
from the names of actual CSS attributes. If a CSS attribute name con

SS2Properties property name is formed by removing hyphens, the C
capitalizing the letter immediately following each hyphen. Thus, the border-left-

 attwidth ribute is accessed through the borderLeftWidth property, and you can access
the font-family attribute with code like this:

element.style.fontFamily = "sans-serif";

There is one other naming difference between CSS attributes and the JavaScript
properties of CSS2Properties. The word "float

18.3.2 Working with Style Properties

When working with the style properties of the CSS2Properties object, remember that all
values must be specified as strings. In a style sheet or style attribute, you can write:

position: absolute; font-family: sans-serif; background-color: #ffffff;

To accomplish the same thing for an element e with JavaScript, you have to quote all of
the values:

e.style.position = "absolute";
e.style.fontFamily = "sans-serif";
e.style.backgroundColor = "#ffffff";

Note that the semicolons go outside the strings. These are just normal JavaScript
semicolons; the semicolons you use in CSS style sheets are not required as part of the
string values you set with JavaScript.

e.style.left = "300px";

+ left_padding) + "px";

at
s

values returned by

Furthermore, remember that all the positioning properties require units. Thus, it is not
correct to set the left property like this:

e.style.left = 300; // Incorrect: this is a number, not a string
e.style.left = "300"; // Incorrect: the units are missing

Units are required when setting style properties in JavaScript, just as they are when
setting style attributes in style sheets. The correct way to set the value of the left
property of an element e to 300 pixels is:

If you want to set the left property to a computed value, be sure to append the units at
the end of the computation:

e.style.left = (x0 + left_margin + left_border

As a side effect of appending the units, the addition of the unit string converts the
computed value from a number to a string.

You can also use the CSS2Properties object to query the values of the CSS attributes th
were explicitly set in the style attribute of an element or to read any inline style value
previously set by JavaScript code. Once again, however, you must remember that the

 these properties are strings, not numbers, so the following code (which

assumes that the element e has its margins specified with inline styles) does not do what
you might expect it to:

var totalMarginWidth = e.style.marginLeft + e.style.marginRight;

Instead, you should use code like this:

var totalMarginWidth = parseInt(e.style.marginLeft) +
parseInt(e.style.marginRight);

other properties, such
as n-right, margin-bottom, and margin-left. The CSS2Properties

e.margin = topMargin + "px " + rightMargin + "px " +
n + "px";

ginRight = rightMargin + "px";

ginLeft = leftMargin + "px";

nt

 want
 JavaScript to create DHTML effects.

This expression simply discards the unit specifications returned at the ends of both
strings. It assumes that both the marginLeft and marginRight properties were specified
using the same units. If you exclusively use pixel units in your inline styles, you can
usually get away with discarding the units like this.

Recall that some CSS attributes, such as margin, are shortcuts for
margin-top, margi

object has properties that correspond to these shortcut attributes. For example, you might
set the margin property like this:

e.styl
 bottomMargin + "px " + leftMargi

Arguably, it is easier to set the four margin properties individually:

e.style.marginTop = topMargin + "px";
e.style.mar
e.style.marginBottom = bottomMargin + "px";
e.style.mar

You can also query the values of shortcut properties, but this is rarely worthwhile,
because typically you must then parse the returned value to break it up into its component
parts. This is usually difficult to do, and it is much simpler to query the compone
properties individually.

Finally, let me emphasize again that when you obtain a CSS2Properties object from the
style property of an HTMLElement, the properties of this object represent the values of
inline style attributes for the element. In other words, setting one of these properties is
like setting a CSS attribute in the style attribute of the element: it affects only that one
element, and it takes precedence over conflicting style settings from all other sources in
the CSS cascade. This precise control over individual elements is exactly what we
when using

When you read the values of these CSS2Properties properties, however, they return
meaningful values only if they've previously been set by your JavaScript code or if t
HTML element with which you are working has an inline style attribute that sets th

he
e

, you'll get the empty string unless that paragraph has a style

es the style sheet setting. Thus, although the CSS2Properties object
 to

omputedStyle()

t them
lar

desired property. For example, your document may include a style sheet that sets the left
margin for all paragraphs to 30 pixels, but if you read the leftMargin property of one of
your paragraph elements
attribute that overrid
is useful for setting styles that override any other styles, it does not provide a way
query the CSS cascade and determine the complete set of styles that apply to a given
element. Later in this chapter we will briefly consider the tCge

ethod, which does provide this ability. m

18.3.3 Example: Dynamic Bar Charts

When adding graphs and charts to your HTML documents, you typically implemen
as static, inline images. Because the CSS layout model is heavily based on rectangu
boxes, however, it is possible to dynamically create bar charts using JavaScript, HTML,
and CSS. Example 18-3 shows how this can be done. This example defines a function
makeBarChart() that makes it simple to insert bar charts into your HTML documents.

The code for Example 18-3 uses the techniques shown in Chapter 17 to create new

 text or other content is involved; the bar
le.
.

ition
he

 able to modify Example 18-2

<div>
elements and add them to the document and the techniques discussed in this chapter to set
style properties on the elements it creates. No
chart is just a bunch of rectangles carefully sized and positioned within another rectang
CSS border and background-color attributes are used to make the rectangles visible

The example includes some simple math to compute the height in pixels of each bar
based on the values of the data to be charted. The JavaScript code that sets the pos
and size of the chart and its bars also includes some simple arithmetic to account for t

orders and padding. With the techniques shown in this example, you should presence of b
be to include a JavaScript function that dynamically creates
windows of any specified size.

Figure 18-3 shows a bar chart created using the makeBarChart() function as follows:

<html>
<head>
<title>BarChart Demo</title>
<script src="BarChart.js"></script>
</head>
<body>
<h1>y = 2ⁿ</h1>
<script>makeBarChart([2,4,8,16,32,64,128,256,512], 600, 250,
"red");</script>
<i>Note that each bar is twice as tall as the one before it,

of rapid exponential growth.</i> th
</
e result
body>

</html>

Figure 18-3. A dynamically created bar chart

Example 18-3. Dynamically creating bar charts
/**
 * BarChart.js:
 * This file defines makeBarChart(), a function that creates a bar
chart to
 * display the numbers from the data[] array. The chart is a block
element
 * inserted at the current end of the document. The overall size of the
chart
 * is specified by the optional width and height arguments, which

 * Import this function into an HTML file with code like this:
 * <script src="BarChart.js"></script>
 * Use this function in an HTML file with code like this:
 * <script>makeBarChart([1,4,9,16,25], 300, 150, "yellow");</script>
 **/
function makeBarChart(data, width, height, barcolor) {
 // Provide default values for the optional arguments
 if (!width) width = 500;
 if (!height) height = 350;
 if (!barcolor) barcolor = "blue";

include the
 * space required for the chart borders and internal padding. The
optional
 * barcolor argument specifies the color of the bars. The function
returns the
 * chart element it creates, so the caller can further manipulate it by
 * setting a margin size, for example.
 *

 // The width and height arguments specify the overall size of the
 // generated chart. We have to subtract the border and padding
 // sizes to get the size of the element we create.
 width -= 24; // Subtract 10px padding and 2px left and right
border
 height -= 14; // Subtract 10px top padding and 2px top and bottom
border

 // Now create an element to hold the chart. Note that we make the
chart
 // relatively positioned so that it can have absolutely positioned
children,
 // but it still appears in the normal element flow.
 var chart = document.createElement("DIV");
 chart.style.position = "relative"; // Set relative
positioning
 chart.style.width = width + "px"; // Set the chart width
 chart.style.height = height + "px"; // Set the chart height
 chart.style.border = "solid black 2px"; // Give it a border
 chart.style.paddingLeft = "10px"; // Add padding on the
left,

Function.apply().
 var maxdata = Math.max.apply(this, data);
 // The scaling factor for the chart: scale*data[i] gives the height
of a bar
 var scale = height/maxdata;

 // Now loop through the data array and create a bar for each datum
 for(var i = 0; i < data.length; i++) {
 var bar = document.createElement("div"); // Create div for
bar
 var barheight = data[i] * scale; // Compute height of
bar
 bar.style.position = "absolute"; // Set bar position
and size
 bar.style.left = (barwidth*i+1+10)+"px"; // Add bar border

ng

le

 // Now add the chart we've built to the document body

 chart.style.paddingRight = "10px"; // on the right,
 chart.style.paddingTop = "10px"; // and on the top,
 chart.style.paddingBottom = "0px"; // but not on the bottom
 chart.style.backgroundColor = "white"; // Make the chart
background white

 // Compute the width of each bar
 var barwidth = Math.floor(width/data.length);
 // Find the largest number in data[]. Note the clever use of

and chart pad
 bar.style.top = height-barheight+10+"px"; // Add chart paddi
 bar.style.width = (barwidth-2) + "px"; // -2 for bar border
 bar.style.height = (barheight-1) + "px"; // -1 for bar top
border
 bar.style.border = "solid black 1px"; // Bar border sty
 bar.style.backgroundColor = barcolor; // Bar color
 bar.style.fontSize = "1px"; // IE bug workaround
 chart.appendChild(bar); // Add bar to chart
 }

 document.body.appendChild(chart);

 // Finally, return the chart element so the caller can manipulate
it
 return chart;
}

18.3.4 DHTML Animations

ome of the most powerful DHTML techniques you can achieve with JavaScript and
nimations. There is nothing particularly s

 to do is peri change one or more style properties of an elem
elements. For example, to slide an image into place from the left, you increment the

.left atedly, until it re n
dify th property to "unv

Example 18-4

S
CSS are a
ou have

pecial about DHTML animations; all
ent or y odically

image's style
epeatedly mo

 property repe
e style.clip

aches the desired position. Or you ca
eil" the image pixel by pixel. r

 conta L file that defines a div element to be animated
hort script tha r of the element every 500
conds. Note that the color change is e sim SS

yle property. What at the color is changed repeatedly, using
the setInterval(indow object. (You'll need to use setInterval(

TML animations; you may want to refresh your memory
y reading about the functions in the client-side reference section.) Finally, note the use

 cycle through the colors. Consult Chapter 5

ins a simple HTM
t changes the background coloand a s

illisem
st

 don
 makes it an animation is th

ply by assigning a value to a C

) function of the W
) or setTimeout() for all DH
b se
of the modulo (remainder) operator % to if

s.

Example 18-4. A simple color-changing animation
<!-- This div is the element we are animating -->
<div id="urgent"><h1>Red Alert!</h1>The Web server is under
attack!</div>
<!-- This is the animation script for the element -->
<script>
var e = document.getElementById("urgent"); // Get Element
object
var colors = ["white", "yellow", "orange", "red"] // Colors to cycle
through
var nextColor = 0; // Position in the
cycle
// Evaluate the following expression every 500 milliseconds
// to animate the background color of the div element
setInterval("e.style.backgroundColor=colors[nextColor++%colors.length];
", 500);
</script>

Example 18-4

you've forgotten how that operator work

 produces a very simple animation. In practice, CSS animations typically
involve modifications to two or more style properties (such as top, left, and clip) at
the same time. Setting up complex animations using a technique like that shown in

Example 18-4 can get quite complicated. Furthermore, in order to avoid becoming
annoying, animations should typically run for a short while and then stop, but there is no
way to stop the animation produced by Example 18-4.

Example 18-5 shows a JavaScript file that defines a CSS animation function that makes it
much easier to set up animations, even complex ones. The animateCSS() function
defined in this example is passed five arguments. The first specifies the HTMLElement
object to be animated. The second and third arguments specify the number of frames in
the animation and the length of time each frame should be displayed. The fourth
argument is a JavaScript object that specifies the animation to be performed. And the
fifth argument is an optional function that should be invoked once when the animation is
complete.

The fourth argument to animateCSS() is the crucial one. Each property of the
JavaScript object must have the same name as a CSS style property, and the value of each
property must be a function that returns a legal value for the named style. Every time a
new frame of the animation is displayed, each of these functions is called to generate a
new value for each of the style properties. Each function is passed the frame number and
the total elapsed time and can use these arguments to help it return an appropriate value.

0,
 { // Set top and clip style properties for each frame as

auto)";},
 });

It uses
 to "Done" when

cos(f/8) +

 +
x"}

 },

An example should make the use of animateCSS() much clearer. The following code
moves an element up the screen while gradually uncovering it by enlarging its clipping
region:

// Animate the element with id "title" for 40 frames of 50 milliseconds
each
animateCSS(document.getElementById("title"), 40, 5

follows:
 top: function(f,t) { return 300-f*5 + "px"; }
 clip: function(f,t) {return "rect(auto "+f*10+"px auto

The next code fragment uses animateCSS() to move a Button object in a circle.
the optional fifth argument to animateCSS() to change the button text
the animation is complete. Note that the element being animated is passed as the
argument to the function specified by the fifth argument:

// Move a button in a circle, then change the text it displays
animateCSS(document.forms[0].elements[0], 40, 50, // Button, 40
frames, 50ms
 { // This trigonometry defines a circle of radius 100 at
(200,200):
 left: function(f,t){ return 200 + 100*Math.
"px"},
 top: function(f,t){ return 200 + 100*Math.sin(f/8)
"p

function(button) { button.value = "Done"; });

The code in Example 18-5 is fairly straightforward; all the real complexity is em
in the properties of the animation object that you pass to animateCSS(), as we'

bedded
ll see

shortly. animateCSS() defines a nested function called displayNextFrame() and
be
ion

object and invokes the various functions to compute the new values of the style
properties.

cess

ame() animateCSS()
works even if animateCSS() is called more than once to animate more than one element

on 11.4

does little more than use setInterval() to arrange for displayNextFrame() to
called repeatedly. displayNextFrame() loops through the properties of the animat

Note that because displayNextFrame() is defined inside animateCSS(), it has ac
to the arguments and local variables of animateCSS(), even though
displayNextFr is invoked after has already returned! This

at a time. (If you don't understand why this works, you may want to review Secti .)

/**

rves as a
mework

 * timePerFrame: The number of milliseconds to display each frame.
t that defines the animation; described

 * If specified, this function is passed

teCSS() function simply defines an animation framework.
It is

e name as a CSS style

ion that returns values for
th

e style

eturn for that frame. For example, to animate an image so
that it
 * slides in from the upper left, you might invoke animateCSS as
follows:
 *

Example 18-5. A framework for CSS-based animations

 * AnimateCSS.js:
 This file defines a function named animateCSS(), which se *
afr

 * for creating CSS-based animations. The arguments to this function
are:
 *
 * element: The HTML element to be animated.
 * numFrames: The total number of frames in the animation.

 * animation: An objec
below.
 * whendone: An optional function to call when the animation
finishes.

 element as its
argument.
 *
 * The anima

 * the properties of the animation object that specify the animation to
be
 * done. Each property should have the sam
property. The

ue of each property must be a funct * val
at

 * style property. Each function is passed the frame number and the
total
 amount of elapsed time, and it can use these to compute th *

value it
 * should r

 * animateCSS(image, 25, 50, // Animate image for 25 frames of 50ms
each
 * { // Set top and left attributes for each frame as
follows:
 * top: function(frame,time) { return frame*8 + "px"; },
 * left: function(frame,time) { return frame*8 + "px"; }
 * });
 *
 **/
function animateCSS(element, numFrames, timePerFrame, animation,
whendone) {
 var frame = 0; // Store current frame number
 var time = 0; // Store total elapsed time

 // Arrange to call displayNextFrame() every timePerFrame
milliseconds.
 // This will display each of the frames of the animation.
 var intervalId = setInterval(displayNextFrame, timePerFrame);

ach

 animateCSS() even though it is invoked after that function has
returned!

 we're
d
 clearInterval(intervalId); // If so, stop calling

s defined in the animation
object
 for(var cssprop in animation) {
 // For each property, call its animation function, passing
the
 // frame number and the elapsed time. Use the return value
of the
 // function as the new value of the corresponding style
property
 // of the specified element. Use try/catch to ignore any
 // exceptions caused by bad return values.
 try {
 element.style[cssprop] = animation[cssprop](frame,
time);
 } catch(e) {}
 }

 frame++; // Increment the frame number
 time += timePerFrame; // Increment the elapsed time

 // The call to animateCSS() returns now, but the line above
ensures that
 // the nested function defined below will be invoked once for e
frame
 // of the animation. Because this function is defined inside
 // animateCSS(), it has access to the arguments and local
variables of
 //

 function displayNextFrame() {
 if (frame >= numFrames) { // First, see if
one

ourselves
 if (whendone) whendone(element); // Invoke whendone
function
 return; // And we're finished
 }

 // Now loop through all propertie

 }
}

18.4 DHTML in Fourth-Generation Browsers

t for the CSS1 standard
and support the CSS positioning attributes (which were integrated into the CSS2

t exist
when these fourth-generation browsers were being developed, so they do not conform to
that standard. Nevertheless, it is possible to achieve DHTML effects in both browsers.

rer 4

Internet Explorer 4 and Netscape 4 were the browsers that introduced DHTML
technology to the Internet. Both browsers include partial suppor

standard) that are critical to DHTML. Unfortunately, the DOM standard did no

18.4.1 DHTML in Internet Explo

As we saw in Chapter 17, IE 4 does not support the document.getEleme
ethod, nor does it supp

ntById()
m ort an API for dynamically creating new nodes and inserting
them into a document. Instead, it provides the document.all[] array as a way of
locating arbitrary elements of the document and allows document content to be altered
with the innerHTML property of document elements. IE 4 does not conform to the
standards here, but it provides adequate alternatives.

Although traversing and modifying documents is an important part of DHTML, the focus
of this chapter is on the dynamic use of CSS styles. The good news is that the DOM API

ld in
IE 4 does not fully

support CSS, so you should not expect all style properties to be scriptable.)

The CSS2 standard specifies that the position attribute can be used to specify absolute
or relative positioning for any element in a document. IE 4 was implemented before
CSS2 was complete, however, and it supports absolute positioning for only a certain
subset of elements. Therefore, when using absolute positioning in IE 4, you should wrap
the content you want to position or animate in <div> or tags, which do honor the
CSS position attribute.

18.4.2 DHTML in Netscape 4

es

described earlier for setting CSS style attributes through the style property was adopted
from the IE 4 API. Thus, once you've used document.all[] to locate the document
element you want to modify, you can script the styles of that element just as you wou
a browser that fully supports the DOM API. (Remember, though, that

Creating DHTML effects with Netscape 4 is a more complicated affair. Netscape 4 do
not support a full object model, so it does not allow JavaScript programs to refer to
arbitrary HTML elements. It cannot, therefore, allow access to the inline styles of
arbitrary elements. Instead, it defines a special Layer object.[5] Any element that is
absolutely positioned (that is, any element that has its position style set to absolute

ependently
) is

placed in a separate layer from the rest of the document. This layer can be ind

positioned, hidden, shown, lowered below or raised above other layers, and so on. The
andardized. For

is reason, it has been dropped by the Mozilla project and is not supported in Mozilla or
Layer API was proposed to the W3C for standardization but was never st
th
in Netscape 6. Thus, the techniques described in this section are useful only in the 4.x
series of browsers from Netscape.

[5] Layers were introduced in Chapter 17, when we discussed Netscape 4 compatibility with the core DOM API. Here we expand that
introduction and discuss how layers provide an alternative to the core DOM API and an alternative to the DOM API for accessing CSS styles.

 and,
not surprisingly, the layers[] array of the Document object contains the complete set of
Layer objects in a document. (Layer objects appear in this array in the order in which
they appear in the document.) Additionally, any layer that is given a name with the name
or id attribute can be accessed by name. For example, if a layer specifies id="L2", you

is

 property, just as windows and
frames do. The property of a Layer object refers to a Document object: each

L document. Layers can even be nested; we
can output some HTML text into a nested layer with code like this:

Netscape 4 does not allow us to create or manipulate the nodes of the document tree, and
it does not even support the innerHTML property of Internet Explorer. However, the fact
that layers contain independent documents does provide a technique for dynamically
modifying document content.

Although Netscape 4 defines a layer as an element with the CSS position style set, it
does not define any way to script the styles of a layer element directly. Instead, the Layer
object defines properties and methods that we can use to dynamically position layers.

ly the same as style properties. For
 Layer object specify the pixel position of the

l e setting the left and top style properties of
an element, except that the Layer properties expect numeric pixel values instead of

f

ad
visible hidden zIndex

Each independently positioned layer in a document is represented by a Layer object,

can refer to it in Netscape as document.L2 or as document.layers["L2"]. Although
Netscape 4 does not provide a way to refer to arbitrary document elements, th
layers[] array provides a way to refer to the most important dynamic elements.

A layer is something like a separate window or frame. Although the Layer object is not
the same as the Window object, it does have a document

document
layer has its own totally independent HTM

document.layers[1].document.layers[0].document.write("Layers Are
Fun!");
document.layers[1].document.layers[0].document.close();

The properties of the Layer object have names that are similar to important CSS style
attributes, but these layer properties are not exact
example, the left and top properties of the
ayer; setting these properties of a layer is lik

strings that include a numeric value and a unit specification. The visibility property o
a layer specifies whether the contents of the layer should be visible; it is a lot like the
style property with the same name, except that it expects a value of show or hide inste
of the CSS standard or . The Layer object also supports a

property that works just like the zIndex style property. Table 18-3 lists key CSS style
properties and the Layer property that is most closely equivalent to each. Note that these
are the only style properties that Netscape 4 allows to be scripted.

rties in Netscape 4 Table 18-3. Layer prope

CSS property Equivalent Layer property Layer notes

left, top left, top

Specify pixels without units. See al
moveTo() and moveBy().

so

zIndex

zIndex

See also moveAbove(), moveBelow(
).

visibility

visibility

Layer returns show or hide even if
you set this property to the standard
visible and hidden values.

clip

clip.bottom,
clip.height, clip.left,
clip.right,
clip.top, clip.width

Specify pixels without units.

backgroundColor

bgColor

backgroundImage background.src
Set to a URL string.

As you can see from Table 18-3, the Layer object supports a couple of useful properties
that are not related to dynamic positioning. The background.src property specifies a
background image for the layer, and the bgColor property specifies a background color

dImage and

In addition to its properties, the Layer object offers a number of convenient methods.
moveBy() and moveTo() move a layer by a relative amount or to an absolute position.
moveAbove() and moveBelow() set the zIndex of a layer relative to that of some other
layer. See the client-side reference section of this book for a complete list of Layer
properties and methods.

Because every layer contains an independent document, you can dynamically update the
contents of a layer with the open(), write(), and close() methods of the Document
object, as we saw in Chapter 14

for the layer. These properties correspond to the backgroun
backgroundColor style properties.

. In addition, the src property of a layer specifies the
URL of the document that it displays. By setting this property, you can force the browser
to load an entirely new document for display in the layer. The load() method is similar;
it loads a new URL and changes the layer's width at the same time. Because layers often

contain dynamically generated content, you may find it convenient to use javascript:
URLs with the src property and load() method.

We've seen that Netscape 4 automatically creates a Layer object for any element that has
its position style property set to absolute. The Netscape 4 API also allows layers to be
created in other, less standards-compliant ways. For example, Netscape 4 defines an
HTML <layer> tag that allows layers to be defined directly in HTML. <layer> remains
a proprietary Netscape 4 extension; it was not included in the HTML 4 standard and is
not supported in Mozilla or Netscape 6. More importantly, though, Netscape 4 supports a
Layer() constructor that allows Layer objects to be dynamically created, as needed
within a program. See the client-side reference section of this book for details.

18.4.3 Example: A Cross-Platform DHTML Animation

Despite the differences between the DOM API, the IE 4 API, and the Netscape Layer
API, it is still possible to create DHTML effects that work in DOM-compliant browsers,
in pre-DOM versions of IE, and in Netscape 4. Example 18-6 shows one way it can be
done. This script displays the word "Hello" and animates it in a straight line from one
point in the browser window to another.

Note the compatibility technique used in this example: we test for the existence of key
functions, arrays, and properties before using them. If the Document object has a property
named getElementById, we assume that we have a DOM-compliant browser with that

Example 18-6. A cross-browser DHTML animation script
!-- This is the dynamic element we will animate. We wrap the h1 tag in
a -->
!-- div because IE 4 won't move the h1 without a div or a span

div id="title" style="position:absolute"><h1>Hello</h1></div>

<!-- This is the JavaScript code that performs the animation -->
script>
// These variables set the parameters for our animation:
ar id = "title"; // Name of the element to animate
ar numFrames = 30; // How many frames to display

ar x0 = 100, y0 = 100; // The element's starting position
var x1 = 500, y1 = 500; // The element's ending position
ar dx = (x1 - x0)/(numFrames-1); // Distance to horizontally move
ach frame

rame
var frameNum = 0; // Frame we are at now
ar element = null; // The element to be animated

property referring to the getElementById() method. Similarly, if the Document object
has a property named all, we assume that we're running in Internet Explorer and use the
document.all[] array to locate the element to be animated.

<

<
container. -->
<

<

v
v
var interval = 100; // How long to display each frame
v

v
e
var dy = (y1 - y0)/(numFrames-1); // Distance to vertically move each
f

v

// First, we find the element to be animated. Use a DOM-compliant
technique
// if the browser supports it; otherwise, fall back on browser-specific
code.
if (document.getElementById) { // If this is a DOM-
compliant browser,
 element = document.getElementById(id); // use the DOM method
}
else if (document.all) { // Otherwise, if the IE API is
supported,
 element = document.all[id]; // use the all[] array to find the
element
}
else if (document.layers) { // Else, if the Netscape API is
supported,
 element = document.layers[id]; // use the layers[] array to get
the element
}

// If we found the element to animate using one of the previous

le

// Layer API.
function nextFrame() {
 if (element.style) {
 // If the browser supports it, move the element by setting CSS
 // style properties. Note the inclusion of the units string.
 element.style.left = x0 + dx*frameNum + "px";
 element.style.top = y0 + dy*frameNum + "px";
 }
 else {
 // Otherwise, assume that element is a layer, and move it by
 // setting its properties. We could also use element.moveTo(
).
 element.left = x0 + dx*frameNum;
 element.top = y0 + dy*frameNum;
 }

 // Increment the frame number, and stop if we've reached the end
 if (++frameNum >= numFrames) clearInterval(intervalId);
}
</script>

18.5 Other DOM APIs for Styles and Style Sheets

techniques,
// start animating it by calling nextFrame() every interval
milliseconds
if (element) {
 var intervalId = setInterval("nextFrame()", interval);
}

// This function is repeatedly called to display each frame of the
animation.
// It moves the element using either the DOM API for setting CSS sty
// properties or, if the browser does not support that API, the
Netscape

So far in this chapter, we've discussed a simple DOM API for working with CSS styles:
every HTMLElement in a document has a style property that represents the inline style
attributes of that element. The style property refers to a CSS2Properties object that
defines a JavaScript property for each CSS style attribute defined by the CSS2 standard.

f the Although we've made extensive use of it, the CSS2Properties object is just one part o
DOM API for CSS.[6] This section provides a quick overview of the rest of the DOM API
for working with CSS style sheets. Note, however, that at the time of this writing, much
of the CSS API is not well supported by current (sixth-generation) browsers. You should

test carefully before relying on any of the APIs described here.

 In fact, the CSS2Properties object is optional. A DOM implementation may support CSS without supporting CSS2Properties. In practice,
however, this is the most commonly used API for working with styles, and DOM implementations in web browsers are effectively required to
support it.

setProperty() getPropertyValue(
), which you can use as an alternative to setting and querying the individual style
properties of CSS2Properties. For example, these two lines of code accomplish the same
thing:

element.style.fontFamily = "sans-serif";
element.style.setProperty("font-family", "sans-serif", "");

Other features of the CSSStyleDeclaration interface are the removeProperty() method,
which deletes a named style, and the cssText property, which returns a text
representation of all the style attributes and their values. Since CSSStyleDeclaration
objects represent a set of style attributes and their values, they can also be used as arrays
to iterate through the names of the style attributes.

18.5.2 Computed Styles

As I emphasized earlier in this chapter, the style property of a document element
represents the style attribute for that element, and it does not contain any information
about other styles (from style sheets) that affect that element. To determine the complete
set of styles that apply to an element, use the getComputedStyle() method of the
Window object (this method is defined by the AbstractView interface: see the
"AbstractView.getComputedStyle()" entry in the DOM reference section). The return
value of this method is a CSSStyleDeclaration object that describes all the styles that
apply to the specified element. You can assume that the returned object also implements
the CSS2Properties interface, just as the style property of an element does.

[6]

18.5.1 Style Declarations

The CSS2Properties interface is a subinterface of CSSStyleDeclaration. Thus, the style
property of each document element also implements the properties and methods of
CSSStyleDeclaration. The methods include and

To illustrate the difference between an element's inline style and its computed style,
consider an element e. To determine whether e has a font specified in its inline style
attribute, you can do this:

var inlinefont = e.style.fontFamily;

But to determine what font family e is displayed in (regardless of whether this is
specified by an inline style or by a style sheet), do this instead:

var fontfamily = window.getComputedStyle(e, null).fontFamily;

You may prefer to use getComputedStyle() in a way that makes it clearer that it is
defined by the AbstractView interface:

var fontfamily = document.defaultView.getComputedStyle(e,
null).fontFamily;

ne a nonstandard but useful currentStyle property
in addition to the style property for all HTML elements. currentStyle refers to a
CSS2Properties object that holds the computed style for that element.

18.5.3 Override Styles

standard specifies that a web browser have a defau t defines the
basic display styles of HTML elements. The browser may allow the user to specify a user
style sheet that represents the user's style preferences and overrides styles specified in the
default style sheet. Author style sheets are style sheets defined by a document's author --
that is, the styles included in or linked into a document. Author style sheets override the
browser's default styles and the user's styles (except for !important styles). Inline styles
specified with the style attribute of an element can be considered part of the author style
sheet.

The DOM standard introduces the notion of an override style sheet that overrides the
author style sheet, including inline styles. By setting styles for an element in the override
style sheet, you can change the displayed style of an elemen
document's style sheets or the inline style of that element. T e override style of
an element, use the getOverrideStyle() method of the D

The style values returned by getComputedStyle() are read-only, since they come from
various places in the style cascade. Setting any of the attributes has no effect on the style
of the element. The getComputedStyle() method should also be considered
"expensive," since it must traverse the entire cascade and build a large
CSSStyleDeclaration representing the many style attributes that apply to the element.

Finally, note that IE 5 and later defi

The CSS lt style sheet tha

t without modifying the
o obtain th
ocument object:

var element = document.getElementById("title");
var

This method returns a CSSStyleDeclaration object (which also im ents
CSS2Properties) that you can use to change the displayed s lement. Note the
difference between setting an override style and an inline style:

override.backgroundColor = "yellow"; // Sets an override style
style.backgroundColor = "pink"; // Sets yle

18.5.4 Creating Style Sheets

The DOMImplementation object (accessed as document.implementation) defines a
createCSSStyleSheet() method for creating CSSStyleS
CSSStyleSheet object defines an insertRule() method that you can use to add style
rules to the style sheet. Unfortunately, DOM Level 2 does not define any way to associate

le sheet with a document, so there is currently n
Future versions of the DOM standard may remedy this.

18.5.5 Traversing Style Sheets

The core DOM API makes it possible to traverse an HTML (or XML) document and
examine every element, attribute, and Text node of the document. Similarly, the style
sheets and CSS modules of the DOM make it possible to examine all the style sheets in
or linked into a document and to traverse those style sheets, examining all the rules,

 and style attributes that comprise them.

For scripters who want to create DHTML, it is usually suffi ithin
the inline styles of elements using the API shown earlier in this chapter, and it is not
typically necessary to traverse style sheets. Nevertheless, this section briefly introduces
the DOM API for style-sheet traversal. You can find further details on the API in the

ference section. At the time of this writing this API is not well supported, but
support in Mozilla is expected soon. Note also that IE 5 defines a proprietary and
incompatible API for traversing style sheets.

The style sheets that are included in or linked into a docume the
 array. For example:

var ss = document.styleSheets[0];

tyleSheet objects. StyleShee ts a generic style
sheet. In HTML documents using CSS style sheets, these objects all implement the

SSStyleSheet, which provides CSS-specific properties and methods. A

 override = document.getOverrideStyle(element, null);

plem
tyle of an e

element.

 an inline st

heet objects. The

a created sty o point in using this method.

selectors,

cient simply to work w

DOM re

nt are accessible through
document.styleSheets[]

The elements of this array are S t represen

subinterface C

CSSStyleSheet object has a cssRules[] array that contains the rules of the style sheet.
For example:

var firstRule = document.styleSheets[0].cssRules[0]

The CSSStyleSheet interface also defines insertRule() a methods
for adding and removing rules from the style sheet:

leSheets[0].insertRule("H1 { text-we

The elements of the CSSStyleSheet.cssRules[] array are CSSRule objects. CSS style
ontain a number of different types of rules. In addition to the basic style
ve seen in this chapter, there are various "at-ru with

keywords like @import and @page. You can read about these special types of CSS rules
in a CSS reference.

The CSSRule interface is a generic one that can represent any type of rule and has
es that represent the specific rule types. The typ ule
e specific rule type. Most rules in a CSS style sheet are basic style rules, such

h1 { font-family: sans-serif; font-weight: bold; font-size: 24pt; }

type property of CSSRule.STYLE_
bjects that additionally implement the CSSStyleRule interface. CSSStyleRule

bjects define a selectorText property that contains the rule
e previous rule) and a style property that contains the rule's style attributes and values

(such as the font attributes in the previous rule). For example:

The value of the property is a CSSStyleDeclaration object. We've
t the

inline styles of document elements. It defines methods such as setProperty(),

The properties of CSS2Properties and the getPropertyValue() method of

nd deleteRule()

document.sty ight: bold; }", 0);

sheets may c
rules that we' les," which are specified

subinterfac
specifies th

e property of CSSR

as:

Rules of this type have a
CSSRule o

RULE and are represented by

 selector (the string "h1" in o
th

var rule = document.styleSheets[0].cssRules[0]
var styles;
if (rule.type == CSSRule.STYLE_RULE) styles = rule.style;

CSSStyleRule.style
already encountered this object: it is the same type of object that is used to represen

removeProperty(), and getPropertyValue(). As discussed previously,
CSSStyleDeclaration objects typically also implement the CSS2Properties interface and
therefore define a property that corresponds to each CSS attribute.

CSSStyleDeclaration return the values of CSS style attributes as strings. As discussed
 an attribute such as earlier in this chapter, this means that when you query the value of

font-size (or when you read the fontSize property of CSS2Properties), what you get
back is a number and a units value. This might be "24pt" or a (probably less useful) value

f

 a
e

ents CSSValueList and behaves like an array of CSSValue
objects. Otherwise, the CSSValue object is typically a "primitive" value and implements

primitiveType that specifies the type of the value or the units that apply to the value.
There are 26 possible types, all represented by constants like
CSSPrimitiveValue.CSS_PERCENTAGE, CSSPrimitiveValue.CSS_PX, and
CSSPrimitiveValue.CSS_RGBCOLOR. In addition to the primitiveType property and the
various type constants, CSSPrimitiveValue defines various methods for setting and
querying the value represented by the object. If the CSSPrimitiveValue object represents
a length or percentage, for example, you call getFloatValue() to obtain the length. If
the property indicates that the value represents a color, you use

the value of the clip attribute), and Counter objects represent CSS2 counters.
See the DOM reference section for details.

like "10mm". In general, when you get the value of a CSS attribute as a string, you have
to parse it in some way to extract the data you want from it. This is particularly true o
attributes like clip, which have a complex string syntax.

As an alternative to parsing strings, CSSStyleDeclaration provides another method,
getPropertyCSSValue(), that returns the value of a CSS attribute as a CSSValue
object instead of a string. The cssValueType property of the CSSValue object specifies
sub-interface that the object also implements. If an attribute has more than one value, th
CSSValue object implem

the CSSPrimitiveValue interface. CSSPrimitiveValue objects have a property named

primitiveType
getRGBColorValue() to query the color value.

Finally, the DOM CSS API also defines a few special object types to represent attribute
values: RGBColor objects represent color values, Rect objects represent rectangle values
(such as

Chapter 19. Events and Event
Handling
As we saw in Chapter 12, interactive JavaScript programs use an event-driven

en
n the Submit button

nt
 the browser invokes the handler code. All applications with graphical user

interfaces are designed this way: they sit around waiting for the user to do something
spond.

As an aside, it is worth noting that timers and error handlers (both of which are described
in Chapter 13

programming model. In this style of programming, the web browser generates an event
whenever something interesting happens to the document or to some element of it. For
example, the web browser generates an event when it finishes loading a document, wh
the user moves the mouse over a hyperlink, or when the user clicks o
of a form. If a JavaScript application cares about a particular type of event for a particular
document element, it can register an event handler -- a JavaScript function or snippet of
code -- for that type of event on the element of interest. Then, when that particular eve
occurs,

interesting (i.e., they wait for events to occur) and then they re

) are related to the event-driven programming model. Like the event

function when the
t is the passage of a

imers and
ted to

event handling, and I encourage you to reread Section 13.4

handlers described in this chapter, timers and error handlers work by registering a
function with the browser and allowing the browser to call that
appropriate event occurs. In these cases, however, the event of interes
specified amount of time or the occurrence of a JavaScript error. Although t
rror handlers are not discussed in this chapter, it is useful to think of them as relae

, and Section 13.5, in the

 event handlers. This chapter fills in all the
issing details about events and event handling. Unfortunately, these details are more

 this book. It was codified, to a limited extent, by
the HTML 4 standard, and is informally considered to be part of the DOM Level 0 API.
Although its features are limited, it is supported by all JavaScript-enabled web browsers
and is therefore portable.

The standard event model. This powerful and full-featured event model was
standardized by the DOM Level 2 standard. It is supported by the Netscape 6 and Mozilla
browsers.

The Internet Explorer event model. This event model is implemented by IE 4 and later
and has some, but not all, of the advanced features of the standard event model. Although
Microsoft participated in the creation of the DOM Level 2 event model and had plenty of

context of this chapter.

Most nontrivial JavaScript programs rely heavily on event handlers. We've already seen a
number of JavaScript examples that use simple
m
complex than they ought to be, because there are four distinct and incompatible event-
handling models in use. These models are:

The original event model. This is the simple event-handling scheme that we've used (but
not thoroughly documented) so far in

time to implement this standard event model in IE 5.5 and IE 6, they have stuck with
their proprietary event model instead. This means that JavaScript programmers who w
to used advanced event-handling features must write special code for IE browsers.

ant

n
tandard event model. It has some, but not all, of the advanced features

of the standard event model. JavaScript programmers who want to use advanced event-
ed to understand this model.

the code we've seen so far in this book, event handlers have been written as strings of
aScript code that are used as the values of certain HTML attributes, such as onclick.

Different types of occurrences generate different types of events. When the user moves
an when the user clicks
rence can generate

ouse over a Submit
ton, for example, it generates a different event than when the user clicks the mouse

ver the Reset button of a form.

In the original event model, an event is an abstraction internal to the web browser, and
e in

e

. And if the application needs to know when the user clicks the

<input> tag that defines the button
o > element that contains that button.

There are quite a few different event handler attributes that you can use in the original
event model. They are listed in Table 19-1

The Netscape 4 event model. This event model was implemented in Netscape 4 and
continues to be (mostly, but not fully) supported in Netscape 6, although it has bee
superseded by the s

handling features and retain compatibility with Netscape 4 ne

The rest of this chapter documents each of these event models in turn.

19.1 Basic Event Handling
In

vJa
Although this is the key to the original event model, there are a number of additional
details, described in the following sections, that you should understand.

19.1.1 Events and Event Types

the mouse over a hyperlink, it causes a different type of event th
e occurthe mouse on the Submit button of a form. Even the sam

ent types of events based on context: when the user clicks the mdiffer
but
o

JavaScript code cannot manipulate an event directly. When we speak of an event typ
the original event model, what we really mean is the name of the event handler that is
invoked in response to the event. In this model, event-handling code is specified using th
attributes of HTML elements (and the corresponding properties of the associated
JavaScript objects). Thus, if your application needs to know when the user moves the
mouse over a specific hyperlink, you use the onmouseover attribute of the <a> tag that
defines the hyperlink
Submit button, you use the onclick attribute of the

r the onsubmit attribute of the <form

, which also specifies when these event
handlers are triggered and which HTML elements support the handler attributes.

As client-side JavaScript programming has evolved, so has the event model it supports.
With each new browser version, new event handler attributes have been added. Finally,
the HTML 4 specification codified a standard set of event handler attributes for HTML

tags. The third column of Table 19-1 specifies which HTML elements support each event
handler attribute, and it also specifies which browser versions support that event handler
for that tag and whether the event handler is a standard part of HTML 4 for that tag. In
this third column, "N" is an abbreviation for Netscape and "IE" is an abbreviation for
Internet Explorer. Each browser version is backward compatible with previous versions,
so "N3," for example, means Netscape 3 and all later versions.

If you study the various event handler attributes in Table 19-1 closely, you can discern
two broad categories of events. One category is raw events or input events. These are the
events that are generated when the user moves or clicks the mouse or presses a key on the
keyboard. These low-level events simply describe a user's gesture and have no other
meaning. The second category of events are semantic events. These higher-level events

: when the

 are
lick,

One final note about Table 19-1

have a more complex meaning and can typically occur only in specific contexts
browser has finished loading the document or a form is about to be submitted, for
example. A semantic event often occurs as a side effect of a lower-level event. For

rsexample, when the user clicks the mouse over a Submit button, three input handle
triggered: onmousedown, onmouseup, and onclick. And, as a result of this mouse-c
the HTML form that contains the button generates an onsubmit event.

 is required. For raw mouse event handlers, column three
specifies that the handler attribute is supported (in HTML 4, at least) by "most elements."
The HTML elements that do not support these event handlers are typically elements that

rs and the HTML elements that support them

belong in the <head> of a document or do not have a graphical representation of their
own. The tags that do not support the nearly universal mouse event handler attributes are:
<applet>, <bdo>,
, , <frame>, <frameset>, <head>, <html>, <iframe>,
<isindex>, <meta>, and <style>.

Table 19-1. Event handle

Handler Triggered when Supported by

onabort Image loading interrupted. N3, IE4:

onblur Element loses input focus.

HTML4, N2, IE3: <button>,
<input>, <label>,
<select>, <textarea>

N3, IE4: <body>

onchange
Selection in a <select> element or other
form element loses focus and its value has HTML4, N2, IE3: <input>,

<select>, <textarea> changed since it gained focus.

onclick

Mouse press and release; follows
mouseup event. Return false to cancel
default action (i.e., follow link, reset,
submit).

N2, IE3: <a>, <area>,
<input>

HTML4, N6, IE4: most

Table 19-1. Event handlers and the HTML elements that support them

Handler Triggered when Supported by

elements

ondblclick Double-click. HTML4, N6, IE4: most
elements

onerror Error when loading image. N3, IE4:

onfocus Element gains input focus.

HTML4, N2, IE3: <button>,
<input>, <label>,
<select>, <textarea>

N3, IE4: <body>

onkeydown Key pressed down. Return false to
cancel.

N4: <input>, <textarea>

HTML4, N6, IE4: form
elements and <body>

onkeypress Key pressed and relea
to cancel.

sed. Return false
, <textarea>

HTML4, N6, IE4: form
elements and <body>

N4: <input>

onkeyup Key released.

N4: <input>, <textarea>

HTML4, N6, IE4: form
elements and <body>

onload Document load complete.

HTML4, N2, IE3: <body>,
<frameset>

N3, IE4:

N6, IE4: <iframe>,
<object>

onmousedown Mouse button pressed.

N4: <a>, <area>,

HTML4, N6, IE4: most
elements

onmousemove Mouse moved. HTML4, N6, IE4: most
elements

onmouseout Mouse moves off element. N3: <a>, <area>

Table 19-1. Event handlers and the HTML elements that support them

Handler Triggered when Supported by

HTML4, N6, IE4: most
elements

onmouseover
Mouse moves over element. For links,
return true to prevent URL from
appearing in status bar.

N2, IE3: <a>, <area>

HTML4, N6, IE4: most
elements

onmouseup Mouse button released.

N4: <a>, <area>,

HTML4, N6, IE4: most
elements

onreset Form reset requested. Return false to
prevent reset. HTML4, N3, IE4: <form>

onresize Window size changes. N4, IE4: <body>,
<frameset>

onselect Text selected. HTML4, N6, IE3: <input>,
<textarea>

onsubmit Form submission requested. Return false
to prevent submission. HTML4, N3, IE4: <form>

onunload Document or frameset unloaded. HTML4, N2, IE3: <body>,
<frameset>

19.1.2 Event Handlers as Attributes

As we've seen in a number of examples prior to this chapter, event handlers are specified
(in the original event model) as strings of JavaScript code used for the values of HTML
attributes. So, for example, to execute JavaScript code when the user clicks a button,
specify that code as the value of the onclick attribute of the <input> tag:

<input type="button" value="Press Me" onclick="alert('thanks');">

The value of an event handler attribute is an arbitrary string of JavaScript code. If the
handler consists of multiple JavaScript statements, the statements must be separated from
each other by semicolons. For example:

<input type="button" value="Click Here"
 onclick="if (window.numclicks) numclicks++; else numclicks=1;
 this.value='Click # ' + numclicks;">

When an event handler requires multiple statements, it is usually easier to define them in
the body of a function and then use the HTML event handler attribute to invoke that
function. For example, if you want to validate a user's form input before submitting the
form, you can use the onsubmit attribute of the <form> tag. Form validation typically
requires several lines of code, at a minimum, so instead of cramming all this code into
one long attribute value, it makes more sense to define a form-validation function and
simply use the onclick attribute to invoke that function. For example, if you defined a
function named validateForm() to perform validation, you could invoke it from an

nt handler like this:

m();">

Remember that HTML is case-insensitive, so you can capitalize event handler attributes
any way you choose. One common convention is to use mixed-case capitalization, with
the initial "on" prefix in lowercase: onClick, onLoad, onMouseOut, and so on. In this
book, I've chosen to use all lowercase, however, for compatibility with XHTML, which is
case-sensitive.

The JavaScript code in an event handler attribute may contain a return statement, and
the return value may have special meaning to the browser. This is discussed shortly.

eve

<form action="processform.cgi" onsubmit="return validateFor

Also, note that the JavaScript code of an event handler runs in a different scope (see
Chapter 4) than global JavaScript code. This, too, is discussed in more detail later in th
section.

19.1.3 Event Handlers as Properties

We've seen that each HTML element in a document has

is

 a corresponding JavaScript
object in the document tree, and the properties of this JavaScript object correspond to the

ler

Technically, the DOM specification does not support the original event model we've

y

attributes of the HTML element. In JavaScript 1.1 and later, this applies to event hand
attributes as well. So if an <input> tag has an onclick attribute, the event handler it
contains can be referred to with the onclick property of the form element object. (
JavaScript is case-sensitive, so regardless of the capitalization used for the HTML
attribute, the JavaScript property must be all lowercase.)

described here and does not define JavaScript attributes that correspond to the event
handler attributes standardized by HTML 4. Despite the lack of formal standardization b
the DOM, this event model is so widely used that all JavaScript-enabled web browsers
allow event handlers to be referred to as JavaScript properties.

Since the value of an HTML event handler attribute is a string of JavaScript code, you
might expect the value of the corresponding JavaScript property to be a string as well.

This is not the case: when accessed through JavaScript, event handler properties are
functions. You can verify this wi

th a simple example:

If you click the button, it displays a dialog box containing the word "function," not the

The button in this form can be referred to as document.f1.b1, which means that an event
handler can be assigned with a line of JavaScript like this one:

document.f1.b1.onclick=function() { alert('Thanks!'); };

An event handler can also be assigned like this:

function plead() { window.status = "Please Press Me!"; }
document.f1.b1.onmouseover = plead;

Pay particular attention to that last line: there are no parentheses after the name of the
function. To define an event handler, we are assigning the function itself to the event
handler property, not the result of invoking the function. This is an area that often trips up
beginning JavaScript programmers.

There are a couple of advantages to expressing event handlers as JavaScript properties.
First, it reduces the intermingling of HTML and JavaScript, promoting modularity and
cleaner, more maintainable code. Second, it allows event handler functions to be
dynamic. Unlike HTML attributes, which are a static part of the document and can be set
only when the document is created, JavaScript properties can be changed at any time. In
complex interactive programs, it can sometimes be useful to dynamically change the
event handlers registered for HTML elements. One minor disadvantage to defining event
handlers in JavaScript is that it separates the handler from the element to which it
belongs. If the user interacts with a document element before the document is fully
loaded (and before all its scripts have executed), the event handlers for the document
element may not yet be defined.

<input type="button" value="Click Here" onclick="alert(typeof
this.onclick);">

word "string." (Note that in event handlers, the this keyword refers to the object on
which the event occurred. We'll discuss the this keyword shortly.)

To assign an event handler to a document element using JavaScript, simply set the event
handler property to the desired function. For example, consider the following HTML
form:

<form name="f1">
<input name="b1" type="button" value="Press Me">
</form>

Example 19-1 shows how you can specify a single function to be the event handler for
many document elements. The example is a simple function that defines an onclick
event handler for every link in a document. The event handler asks for the user's
confirmation before allowing the browser to follow the hyperlink on which the user ha
just clicked. The event handler function returns

s

t

// This function loops through all the hyperlinks in a document and
assigns
// the confirmLink function to each one as an event handler. Don't call
it
// before the document is parsed and the links are all defined. It is
best
// to call it from the onload event handler of a <body> tag.
function confirmAllLinks() {
 for(var i = 0; i < document.links.length; i++) {
 document.links[i].onclick = confirmLink;
 }
}

19.1.3.1 Explicitly invoking event handlers

Because the values of JavaScript event handler properties are functions, we can use
JavaScript to invoke event handler functions directly. For example, if we've used the
onsubmit attribute of a <form> tag to define a form-validation function and we want to
validate the form at some point before the user attempts to submit it, we can use the
onsubmit property of the Form object to invoke the event handler function. The code
might look like this:

document.myform.onsubmit();

Note, however, that invoking an event handler is not a way to simulate what happens
when the event actually occurs. If we invoke the onclick method of a Link object, for
example, it does not make the browser follow the link and load a new document. It

e location property of the Window
object, as we saw in

false if the user does not confirm, which
prevents the browser from following the link. Event handler return values will be
discussed shortly.

Example 19-1. One function, many event handlers
// This function is suitable for use as an onclick event handler for
<a> and
// <area> elements. It uses the this keyword to refer to the documen
element
// and may return false to prevent the browser from following the link.
function confirmLink() {
 return confirm("Do you really want to visit " + this.href + "?");
}

merely executes whatever function we've defined as the value of that property. To make
the browser load a new document, w have to set the

Chapter 13. The same is true of the onsubmit method of a Form

object or the method of a Submit object: invoonclick king the method runs the event
bmitted. (To actually submit the handler function but does not cause the form to be su

orm, we call the submit() method of the Form objf ect.)

One reason that you might want to explicitly invoke an event handler function is if you
want to use JavaScript to augment an event handler that is (or may be) already defined by
HTML code. Suppose you want to take a special action when the user clicks a button, but

t may have been defined in the
le 19-1

you do not want to disrupt any onclick event handler tha
HTML document itself. (This is one of the problems with the code in Examp -- by
adding a handler for each onclick
defined for those hyperlinks.) You might accomplish this with code like the following:

var b = document.myform.mybutton; // This is the button we're
interested in
var oldHandler = b.onclick; // Save the HTML event handler
function newHandler() { /* My event-handling code goes here */ }
// Now assign a new event handler that calls both the old and new
handlers
b.onclick = function() { oldHandler(); newHandler(); }

19.1.4 Event Handler Return Values

In many cases, an event handler (whether specified by HTML attribute or JavaScript
property) uses its return value to indicate the disposition of the event. For example, if you
use the onsubmit event handler of a Form object to perform form validation and discover
that the user has not filled in all the fields, you can return false from the handler to
prevent the form from actually being submitted. You can ensure that a form is not
submitted with an empty text field like this:

<form action="search.cgi"
 onsubmit="if (this.elements[0].value.length == 0) return false;">
<input type="text">
</form>

Generally, if the web browser performs some kind of default action in response to an
event, you can return false to prevent the browser from performing that action. In
addition to onsubmit, other event handlers from which you can return false to prevent
the default action include onclick, onkeydown, onkeypress, onmousedown, onmouseup,
and onreset. The second column of Table 19-1

hyperlink, it overwrites any handlers that were already

 contains a note about the return values
for these event handlers.

s

m

URL with code like this:

There is one exception to the rule about returning false to cancel: when the user move
the mouse over a hyperlink (or image map), the browser's default action is to display the
link's URL in the status line. To prevent this from happening, you must return true fro
the onmouseover event handler. For example, you can display a message other than a

<a href="help.htm" onmouseover="window.status='Help!!'; return
true;">Help

There is no good reason for this exception: it is this way simply because that is always
the way it has been.

Note that event handlers are never required to explicitly return a value. If you don't return
a value, the default behavior occurs.

19.1.5 Event Handlers and the this Keyword

Whether you define an event handler with an HTML attribute or with a JavaScript
.

ent
d,

unsurprising.

Be sure, however, that you understand the implications. Suppose you have an object o
with a method mymethod. You might register an event handler like this:

button.onclick= o.mymethod;

This statement makes button.onclick refer to the same function that o.mymethod does.
rs this

thod
e

 a method

As we discussed in Chapter 11

property, what you are doing is assigning a function to a property of a document element
In other words, you're defining a new method of the document element. When your ev
handler is invoked, it is invoked as a method of the element on which the event occurre
so the this keyword refers to that target element. This behavior is useful and

This function is now a method of both o and button. When the browser trigge
event handler, it invokes the function as a method of the button object, not as a me
of o. The this keyword refers to the Button object, not to your object o. Do not make th
mistake of thinking you can trick the browser into invoking an event handler as
of some other object. If you want to do that, you must do it explicitly, like this:

button.onclick = function() { o.mymethod(); }

19.1.6 Scope of Event Handlers

, functions in JavaScript are lexically scoped. This means
that they run in the scope in which they were defined, not in the scope from which they
are called. When you define an event handler by setting the value of an HTML attribute
to a string of JavaScript code, you are implicitly defining a JavaScript function (as you
can see when you examine the type of the corresponding event handler property in
JavaScript). It is important to understand that the scope of an event handler function
defined in this way is not the same as the scope of other normally defined global
JavaScript functions. This means that event handlers defined as HTML attributes execute
in a different scope than other functions.[1]

[1] It is important to understand this, and while the discussion that follows is interesting, it is also dense. You may want to skip it on your first
time through this chapter and come back to it later.

Recall from the discussion in Chapter 4 that the scope of a function is defined by a scope
chain, or list of objects, that is searched, in turn, for variable definitions. When a variable

 no
 scope chain: the

bal

mplex scope chain than this.

 in some advanced event models, event
handlers are passed an argument), as are any local variables declared in the body of the
event handler. The next object in an event handler's scope chain isn't the global object,
however; it is the object that triggered the event handler. So, for example, suppose you
use an <input> tag to define a Button object in an HTML form and then use the onclick
attribute to define an event handler. If the code for the event handler uses a variable
named form, that variable is resolved to the form property of the Button object. This can
be a useful shortcut when writing event handlers as HTML attributes.

The scope chain of an event handler does not stop with the object that defines the

rdized and is implementation-
ning objects (even things such as

aving the target object in the scope chain of an event handler can be a useful shortcut.
ut having an extended scope chain that includes other document elements can be a

nuisance. Consider, for example, that both the Window and Document objects define
methods named open(). If you use the identifier open without qualification, you are
almost always referring to the window.open() method. In an event handler defined as
an HTML attribute, however, the Document object is in the scope chain before the
Window object, and using open by itself refers to the document.open() method.
Similarly, consider what would happen if you added a property named window to a Form
object (or defined an input field with name="window"). Then, if you define an event
handler within the form that uses the expression window.open(), the identifier window
resolves to the property of the Form object rather than the global Window object, and

x is looked up or resolved in a normal function, JavaScript first looks for a local variable
or argument by checking the call object of the function for a property of that name. If
such property is found, JavaScript proceeds to the next object in the
global object. It checks the properties of the global object to see if the variable is a glo
variable.

Event handlers defined as HTML attributes have a more co
The head of the scope chain is the call object. Any arguments passed to the event handler
are defined here (we'll see later in this chapter that

handler: it proceeds up the containment hierarchy. For the onclick event handler
described earlier, the scope chain begins with the call object of the handler function. Then
it proceeds to the Button object, as we've discussed. After that, it continues up the HTML
element containment hierarchy and includes, at a minimum, the HTML <form> element
that contains the button and the Document object that contains the form. The precise
composition of the scope chain has never been standa
dependent. Netscape 6 and Mozilla include all contai
<div> tags), while IE 6 sticks to a more minimal set that includes the target element, plus
the containing Form object (if any) and the Document object. Regardless of the browser,
the final object in the scope chain is the Window object, as it always is in client-side
JavaScript.

H
B

event handlers within the form have no easy way to refer to the global Window object or
to call the window.open() method!

The moral is that you must be careful when defining event handlers as HTML attributes.
Your safest bet is to keep any such handlers very simple. Ideally, they should just call a
global function defined elsewhere and perhaps return the result:

<script>
function validateForm() {
 /* Form validation code here */
 return true;

<input type="submit" onclick="return validateForm();">

A simple event handler like this is still
can subvert it by defining a valid ements.
But, assuming that the intended global function does get called, that function executes in
the normal global scope. Once again, remember that functions are executed using the

 not the scope from which they are invoked. So, even
though our validateForm() method is invoked from an unusual scope, it is still
executed in its own global scope with no possibility for confusion.

Furthermore, since there is no standard for the precise composition of the scope chain of
an event handler, it is safest to assume that it contains only the target element and the
global Window object. For example, use this to refer to the target element, and when the
target is an <input> element, feel free to use form to refer to the containing Form object.
But don't rely on the Form or Document objects being in the scope chain. For example,
don't use the unqualified identifier write to refer to the Document's write() method.
Instead, spell out that you mean document.write().

Keep in mind that this entire discussion of event-handler scope applies only to event
handlers defined as HTML attributes. If you specify an event handler by assigning a
function to an appropriate JavaScript event handler property, there is no special scope
chain involved, and your function executes in the scope in which it was defined. This is
almost always the global scope, unless it is a nested function, in which case the scope
chain can get interesting again!

19.2 Advanced Event Handling with DOM Level 2
The event-handling techniques we've seen so far in this chapter are part of the Level 0
DOM: the de facto standard API that is supported by every JavaScript-enabled browser.
The DOM Level 2 standard defines an advanced event-handling API that is significantly
different (and quite a bit more powerful) than the Level 0 API. The Level 2 standard does
not incorporate the existing API into the standard DOM, but there is no danger of the

}
</script>

executed using an unusual scope chain, and you
ateForm() method on one of the containing el

scope in which they were defined,

Level 0 API being dropped. For basic event-handling tasks, you should feel free to
continue to use the simple API.

The Level 2 DOM Events module is supported by Mozilla and Netscape 6, but is not
supported by Internet Explorer 6.

19.2.1 Event Propagation

In the Level 0 event model, the browser dispatches events to the document elements on
which they occur. If that object has an appropriate event handler, that handler is run.
There is nothing more to it. The situation is more complex in the Level 2 DOM. In this
advanced ev hen an event oc ocu
target), the target' ered, bu ition, each of the

 ancestor nodes has one or two nities to h le that event. Event
es. First, during the capturing phase, events propagate

from the Document object down through the document tree to the target node. If any of
cestors of the target (but not the tself) has ecially registered capturing

propagation. (We'll learn
how both regular and capturing event handlers are registered shortly.)

 phase of event propagation o t the targe e itself: any appropriate
event handlers registered directly on the target are run. This is akin to the kind of event
handling provided by the Level event model.

ird phase of event propagation i phase, in which the event propagates
or bubbles back up the document hierarchy from the target element up to the Document
object. Although all events are subject to the capturing phase of event propagation, not all
types of events bubble: for example, it does not make sense for a submit event to

ate up the document beyond th > element hich it is directed. On the
other hand, generic events such as mousedown events can be of interest to any element in
the document, so they do bubble up through the document hierarchy, triggering any

lers on each of the ancestors of the target element. In general, raw
vents bubble, while higher-leve tic events ot. (See Table 19-3

ent model, w
s event handler or handlers

curs on a D
are trigg

ment node (known as the event
t in add

target's
propagation proceeds in three phas

 opportu and

the an
event handler, those handlers are run during

 target i
this phase of event

 a sp

The next ccurs a t nod

The th s the bubbling

propag e <form to w

appropriate event hand
input e l seman do n , later in
this chapter, for a definitive list of which events bubble and which do not.)

g event propagation, it is possible for any event handler to stop further propagation
 event by calling the stopPropagation() metho the Event object that

represents the event. We'll see more about the Event object and its stopPropagation()
method later in this chapter.

sociated defau pe ed by the web browser. For
example, when a click event occurs on an <a> tag, the browser's default action is to
follow the hyperlink. Default actions like these are performed only after all three phases
of event propagation complete, and any of the handlers invoked during event propagation

rtunity to prevent the de occurring by calling the
preventDefault() method of the Event object.

Durin
of the d of

Some events cause an as lt action to be rform

have the oppo fault action from

Although this kind of event propagation may seem convoluted, it provides an important
means of centralizing your event-handling code. The Level 1 DOM exposes all document
elements and allows events (such as mouseover events) to occur on any of those
elements. This means that there are many, many more places for event handlers to be
registered than there were with the old Level 0 event model. Suppose you want to trigger
an event handler whenever the user moves the mouse over a <p> element in your
document. Instead of registering an onmouseover event handler for each <p> tag, you can
instead register a single event handler on the Document object and handle these events
during either the capturing or bubbling phase of event propagation.

e other important detail abo aga In the Level 0 model, you
can register only a single event handler for a particular type of event for a particular
object. In the Level 2 model, however, you can register any number of handler functions
for a particular event type on a particular object. This applies also to ancestors of an event
target whose handler function or functions are invoked during the capturing or bubbling

ent propagation.

19.2.2 Event Handler Registration

In the Level 0 API, you register an event handler by setting an attribute in your HTML or
an object property in your JavaScript code. In the Level 2 event model, you register an

ler for a particular element by calling the add ntListener() method of
that object. (The DOM standard uses the term "listener" in its API, but we'll continue to
use the synonymous word "handler" in our discussion.) This method takes three

ents. The first is the name of the event type for which the handler is being
hould be a string that contains the lowercase name of the

 handler attribute, with the lead " removed us, if you use an
onmousedown HTML attribute or onmousedown property in the Level 0 model, you'd use

ng "mousedown" in the Level 2 event model.

ond argument to addEventListener() is the handler (or listener) function that
e invoked when the specified event occ When your function is
, it is passed an Event object a ly argument. This object contains details
e event (such as which mouse button was presse nd defines methods such as

on(). We'll learn more about the Even erface and its subinterfaces

o addEventListe le alue. If true, the specified
 to capture events phase of event propagation.

If the argument is false, the event handler is a normal event handler and is triggered
on the s ant o
 elemen

 might use addEventListener() as follows to register a handler for
<form> element:

There is on ut event prop tion.

phases of ev

event hand Eve

argum
registered. The event type s
HTML ing "on . Th

the stri

The sec
should b
invoked

type of
s its on

urs.

about th d) a
stopPropagati
later.

t int

The final argument t
event handler is used

ner() is a boo
 during the captu

an v
ring

when the event occurs directly
subsequently bubbles up to the

object or on a de
t.

cend f the element and

For example, you
submit events on a

document.myform.addEventListener("submit",
 function(e) { validate(e.target); }
 false);

Or, if you wanted to capture all mousedown events that occur within a particular named
ve like this:

nt.getElement ;
o u o ;

ote that these examples assume that you've defined functions named validate() and
handleMouseDown() elsewhere in your JavaScript code.

Event handlers registered with addEventListener() are executed in the scope in which

<div> element, you might use addE ntListener()

var mydiv = docume ById("mydiv")
mydiv.addEventListener("moused

wn", handleMo seD wn, true)

N

they are defined. They are not invoked with the augmented scope chain that is used for
event handlers defined as HTML attributes. (See Section 19.1.6.)

Because event handlers are registered in the Level 2 model by invoking a method rather
than by setting an attribute or property, we can reg

ister more than one event handler for a

given type of event on a given object. If you call addEventListener() multiple times
to register more than one handler function for the same event type on the same object, all
of the functions you've registered are invoked when an event of that type occurs on (or
bubbles up to, or is captured by) that object. It is important to understand that the DOM
standard makes no guarantees about the order in which the handler functions of a single
object are invoked, so you should not rely on them being called in the order in which you
registered them. Also note that if you register the same handler function more than once
on the same element, all registrations after the first are ignored.

Why would you want to have more than one handler function for the same event on the

rs. Now suppose that you have another module
that wants to use the same mouseover events to display additional information about the

 that the image represents) in the browser's status line. With the Level
API, you'd have to merge your two modules into one, so that they could share the single

Listener() method that expects
the same three arguments but removes an event handler function from an object rather
than adding it. It is often useful to temporarily register an event handler and then remove
it soon afterward. For example, when you get a mousedown event, you might register
temporary capturing event handlers for mousemove and mouseup events so you can see if

same object? This can be quite useful for modularizing your software. Suppose, for
example, that you've written a reusable module of JavaScript code that uses mouseover
events on images to perform image rollove

image (or the link

onmouseover property of the Image object. With the Level 2 API, on the other hand,
each module can register the event handler it needs without knowing about or interfering
with the other module.

addEventListener() is paired with a removeEvent

the use nt
arrives.

document.removeEventListener("mousemove", handleMouseMove, true);
document.removeEventListener("mouseup", handleMouseUp, true);

Both th defined by
the EventTarget interface. In
Docum ent this interface. For more information about these event-
handler registration and deregistration methods, look up the EventTarget interface in the
DOM reference section.

One fin e
not res
practic
and all

19.2.3 addEvent

In the original Level 0 event model, when a function is registered as an event handler for
a document element, it becomes a method of that document element (as discussed
previou

r drags the mouse. You'd then deregister these handlers when the mouseup eve
 In such a situation, your event-handler removal code might look as follows:

e addEventListener() and removeEventListener() methods are
web browsers that support the Level 2 DOM Event API, all

ent nodes implem

al note about event-handler registration: in the Level 2 DOM, event handlers ar
tricted to document elements; you can also register handlers for Text nodes. In
e, however, you may find it simpler to register handlers on containing elements
ow Text node events to bubble up and be handled at the container level.

Listener() and the this Keyword

sly in Section 19.1.5). When the event handler is invoked, it is invoked as a
 of the element, and, within the function, the method

on whi

In Mozilla and Netscape 6, when you register an event handler function with
ener(), it is treated the same way: when the browser invokes the
okes it as a method of the document element for which it was registered.

Note, however, that this is implementation-dependent behavior, and the DOM
specification does not require that this happen. Thus, you should not rely on the value of
the this keyword in your event handler functions when using the Level 2 event model.

currentTarget property of the Event object that is passed to your
ctions. As we'll see when we consider the Event object later in this chapter,

the cur
registered but does so in a portable way.

19.2.4 Registering Objects as Event Handlers

addEventListener() allows us to register event handler functions. As discussed in the
previous section, whether these functions are invoked as methods of the objects for which
they are registered is implementation-dependent. For object-oriented programming, you
may prefer to define event handlers as methods of a custom object and then have them
invoked as methods of that object. For Java programmers, the DOM standard allows
exactly this: it specifies that event handlers are objects that implement the EventListener
interface and a method named handleEvent(). In Java, when you register an event

this keyword refers to the element
ch the event occurred.

addEventList
function, it inv

Instead, use the
handler fun

rentTarget property refers to the object on which the event handler was

handler, you pass an object to addEventListener(), not a function. For simplicity, the
JavaScript binding of the DOM API does not require us to implement an EventListener
interface and instead allows us to pass function references directly to
addEventListener().

 object-oriented JavaScript program and prefer to use objects as
event handlers, you might use a function like this to register them:

event); }
 captures);
}

Any ob
method ent()
object, and the this object, not to the document element
that generated the event. This function works because it uses a nested function literal to
capture and remember the listener object in its scope chain. (If this doesn't make sense to
you, you may want to review Section 11.4

If you are writing an

function registerObjectEventHandler(element, eventtype, listener,
captures) {
 element.addEventListener(eventtype,
 function(event) {
listener.handleEvent(

ject can be registered as an event listener with this function, as long as it defines a
 named handleEv . That method is invoked as a method of the listener

 keyword refers to the listener

.)

Althou
Netsca d
to be p
browse

19.2.5

As I've noted before, the Level 2 DOM is modularized, so an implementation can support
parts of it and omit support for other parts. The Events API is one such module. You can
test whether a browser supports this module with code like this:

Events", "2.0")

s module contains only the API for the basic event-handling infrastructure,
Support for specific types of events is delegated to submodules. Each

submodule provides support for a category of related event types and defines an Event
type that is passed to event handlers for each of those types. For example, the submodule
named MouseEvents provides support for mousedown, mouseup, click, and related event
types. It also defines the MouseEvent interface. An object that implements this interface
is passed to the handler function for any event type supported by the module.

gh it is not part of the DOM specification, Mozilla 0.9.1 and Netscape 6.1 (but not
pe 6.0 or 6.01) allow event listener objects that define a handleEvent() metho
assed directly to addEventListener() instead of a function reference. For these
rs, a special registration function like the one we just defined is not necessary.

 Event Modules and Event Types

document.implementation.hasFeature("

The Event
however.

Table 19-2 lists each event module, the event interface it defines, and the types of events
it supports. Note that the Level 2 DOM does not standardize any type of keyboard event,
so no module of key events is listed here. Support for this type of event is expected in the
DOM Level 3 standard.

Table 19-2. Event modules, interfaces, and types

Module name Event
interface Event types

HTML , Events Event abort, blur, change, error, focus, load, reset, resize
scroll, select, submit, unload

MouseEvents MouseEvent click, mousedown, mousemove, mouseout, mouseover,
mouseup

UIEvents UIEvent DOMActivate, DOMFocusIn, DOMFocusOut

Mutatio

d,
eInsertedIntoDocument,

MNodeRemoved,
DOMNodeRemovedFromDocument,
DOMSubtreeModified

nEvents MutationEvent

DOMAttrModified, DOMCharacterDataModifie
DOMNodeInserted, DOMNod
DO

As you can see from Table 19-2, The HTMLEvents and MouseEvents modules define
event types that are familiar from the Level 0 event module. The UIEvents module
defines event types that are similar to the focus, blur, and click events supported by
HTML form elements but are generalized so that they can be generated by any document
element that can receive focus or be activated in some way. The MutationEvents module

re generated when the document changes (is mutated) in some way.
ent types and are not commonly used.

As I no
the Eve
provide to the handler. Table 19-3

defines events that a
These are specialized ev

ted earlier, when an event occurs, its handler is passed an object that implements
nt interface associated with that type of event. The properties of this object
 details about the event that may be useful lists the

standard events again, but this time organizes them by event type, rather than by event
, this table specifies the kind of event object that is passed to

its handler, whether this type of event bubbles up the document hierarchy during event

fth column specifies which properties
of the event object contain meaningful event details (these properties are documented in
the next section). Note that the properties listed in this column do not include the
properties that are defined by the basic Event interface, which contain meaningful values
for all event types.

module. For each event type

propagation (the "B" column), and whether the event has a default action that is
cancelable with the preventDefault() method (the "C" column). For events in the
HTMLEvents module, the fifth column of the table specifies which HTML elements can
generate the event. For all other event types, the fi

It is useful to compare Table 19-3 with Table 19-1, which lists the Level 0 event handlers
defined by HTML 4. The event types supported by the two models are largely the same
(excluding the UIEvents and MutationEvents modules). The DOM Level 2 standard adds
support for the abort, error, resize, and scroll event types that were not standardized by
HTML 4, and it does not support the dblclick event type that is part of the HTML 4
standard. (Instead, as we'll see shortly, the detail property of the object passed to a
click event handler specifies the number of consecutive clicks that have occurred.)

Table 19-3. Event types

Event type Interface B C Supported by/detail
properties

abort Event yes no , <object>

blur Event no no

<a>, <area>,
, <button>, <input>

<label>, <select>,
<textarea>

change Event yes no <input>, <select>,
<textarea>

click MouseEvent yes yes

screenX, screenY,
clientX, clientY,

detail

altKey, ctrlKey,
shiftKey, metaKey,
button,

error Event yes no <body>, <frameset>,
, <object>

focus Event no no <button> <input>
<label>, <sele

<a>, <area>,
, ,

ct>,
<textarea>

load Event no no
<body>, <frameset>
<iframe>, ,

,

<object>

mousedown MouseEvent yes yes
clientX, cl

,

screenX, screenY,
ientY,

altKey ctrlKey,
shiftKey, metaKey,
button, detail

mousemove MouseEvent yes no sc
cl
reenX, screenY,
ientX, clientY,

Table 19-3. Event types

Event type Interface B C y/detail
properties

Supported b

altKey, ctrlKey,
shiftKey, metaKey

mouseout

screenX screenY
clientX, clien

MouseEvent yes yes altKey, c

, ,
tY,

trlKey,
taKey,

related et
shiftKey, me

Targ

mouseover MouseEvent yes yes

enY,
,

altKey, ctrlKey,
shiftKey, metaKey,

screenX, scre
clientX, clientY

relatedTarget

mouseup MouseEvent yes yes

,
,

altKey, ctrlKey,

,

screenX, screenY
clientX, clientY

shiftKey, metaKey,
button detail

reset Event yes no <form>

resize Event yes no <body>, <frameset>,
<iframe>

scroll Event yes no <body>

select Event yes no <input>, <textarea>

submit Event yes yes <form>

unload Event no no <body>, <frameset>

DOMActivate UIEvent yes yes detail

DOMAttrModified MutationEvent yes no

ame,
attrChange,
prevValue, newValue,
relatedNode

attrN

DOMCharacterDataModified MutationEvent yes no prevValue, newValue

DOMFocusIn UIEvent yes no none

DOMFocusOut UIEvent yes no none

DOMNodeInserted MutationEvent yes no relatedNode

Table 19-3. Event types

Event type Interface B C Supported by/detail
properties

DOMNodeInsertedIntoDocument MutationEvent no no none

DOMNodeRemoved MutationEvents yes no relatedNode

DOMNodeRemovedFromDocument MutationEvent no no none

DOMSubtreeModified MutationEvent yes no none

19.2.6 Event Interfaces and Event Details

When an event occurs, the DOM Level 2 API provides additional details about the event
(such as when and where it occurred) as properties of an object that is passed to the event
handler. Each event module has an associated event interface that specifies details
appropriate to that type of event. Table 19-2 (earlier in this chapter) lists four different
event modules and four different event interfaces.

orm a hierarchy. The Event
interface is the root of the hierarchy; all event objects implement this most basic event

nts UIEvent
also im
subinterface of UIEvent. This means, for example, that the event object passed to an

useEvent, UIEvent, and Event inte s. Finally, the MutationEvent interface

is a subinterface of Event.

event interfaces and highlight their most
important properties and methods. You will find complete details about each interface in
the DOM reference section of this book.

19.2.6.1 Event

The event types defined by the HTMLEvents module use the Event interface. All other
event types use subinterfaces of this interface, which means that Event is implemented by
all event objects and provides detailed information that applies to all event types. The
Event interface defines the following properties (note that these properties, and the
properties of all Event subinterfaces, are read-only):

type

These four interfaces are actually related to one another and f

interface. UIEvent is a subinterface of Event: any event object that impleme
plements all the methods and properties of Event. The MouseEvent interface is a

event handler for a click event implements all the methods and properties defined by each
of the Mo rface

The following sections introduce each of the

The type of event that occurred. The value of this property is the name of the
event type and is the same string value that was used when registering the event
handler (e.g., "click" or "mouseover").

target

The node on which the event occurred, which may not be the same as
currentTarget.

currentTarget

 processed (i.e., the node whose
 event is being processed during the

capturing or bubbling phase of propagation, the value of this property is different

phase of event propagation is currently in process.
GET,

ent has a default action associated with it
 method.

In addition to these seven properties, the Event interface defines two methods that are
also implemented by all event objects: stopPropagation() and preventDefault().
Any event handler can call stopPropagation() to prevent the event from being

The node at which the event is currently being
event handler is currently being run). If the

from the value of the target property. As discussed earlier, you should use this
property instead of the this keyword in your event handler functions.

eventPhase

A number that specifies what
The value is one of the constants Event.CAPTURING_PHASE, Event.AT_TAR
or Event.BUBBLING_PHASE.

timeStamp

A Date object that specifies when the event occurred.

bubbles

A boolean that specifies whether this event (and events of this type) bubbles up
the document tree.

cancelable

A boolean that specifies whether the ev
that can be canceled with the preventDefault()

propagated beyond the node at which it is currently being handled. Any event handler can
call preventDefault() to prevent the browser from performing a default action
associated with the event. Calling in the DOM Level 2 API is like

interface is a subinterface of Event. It defines the type of event object
passed to events of type DOMFocusIn, DOMFocusOut, and DOMActivate. These event
types are not commonly used; what is more important about the UIEvent interface is that
it is the parent interface of MouseEvent. UIEvent defines two properties in addition to

The Window object (known as a "view" in DOM terminology) within which the
event occurred.

detail

A number that may provide additional information about the event. For click,
mousedown, and mouseup events, this field is the click count: 1 for a single-click,
2 for a double-click, and 3 for a triple-click. (Note that each click generates an
event, but if multiple clicks are close enough together, the detail value indicates
that. That is, a mouse event with a detail of 2 is always preceded by a mouse
event with a detail of 1.) For DOMActivate events, this field is 1 for a normal
activation or 2 for a hyperactivation, such as a double-click or Shift-Enter
combination.

1

n,
e left button, 1 indicates the

es the right button. This property is used only when a
button changes state: it is not used to report whether a button is held down during
a mousemove event, for example. Note also that Netscape 6 gets this wrong and
uses the values 1, 2, and 3, instead of 0, 1, and 2. This problem is fixed in
Netscape 6.1.

preventDefault()
returning false in the Level 0 event model.

19.2.6.2 UIEvent

The UIEvent

those defined by Event:

view

9.2.6.3 MouseEvent

The MouseEvent interface inherits the properties and methods of Event and UIEvent and
defines the following additional properties:

button

A number that specifies which mouse button changed state during a mousedow
mouseup, or click event. A value of 0 indicates th
middle button, and 2 indicat

altKey , ctrlKey, metaKey, shiftKey

These four boolean fields indicate whether the Alt, Ctrl, Meta, or Shift keys
ese

, the Level 2 DOM does not provide a standard way to
translate these window coordinates to document coordinates. In Netscape 6, you

in Internet

document.body.scrollTop.

screenX, screenY

These two properties specify the X- and Y-coordinates of the mouse pointer
relative to the upper-left corner of the user's monitor. These values are useful if
you plan to open a new browser window at or near the location of the mouse
event.

mouse left when it moved over the target.
 node that the mouse entered when leaving the
vent types.

rovided

were held down when a mouse event occurred. Unlike the button property, th
key properties are valid for any type of mouse event.

clientX, clientY

These two properties specify the X and Y coordinates of the mouse pointer,
relative to the client area or browser window. Note that these coordinates do not
take document scrolling into account: if an event occurs at the very top of the
window, clientY is 0, regardless of how far down the document has been
scrolled. Unfortunately

can add window.pageXOffset and window.pageYOffset, and
Explorer, you can add document.body.scrollLeft and

relatedTarget

This property refers to a node that is related to the target node of the event. For
mouseover events, it is the node that the
For mouseout events, it is the
target. It is unused for other e

19.2.6.4 MutationEvent

The MutationEvent interface is a subinterface of Event, and is used to provide event
details for the event types defined by the MutationEvents module. These event types are
not commonly used in DHTML programming, so details on the interface are not p
here. See the DOM reference section for details.

19.2.7

Now th us
event object interfaces for the DOM Level 2 event model, we can finally look at how
they work. Example 19-2

 Example: Dragging Document Elements

at we've discussed event propagation, event-handler registration, and the vario

 shows a JavaScript function, beginDrag() , that, when
invoked from a mousedown event handler, allows a document element to be dragged by
the user.

beginD rst is the element that is to be dragged. This
may be the element on which the mousedown event occurred or a containing element
(e.g., you might allow the user to drag on the titlebar of a window to move the entire
window). In either case, however, it must refer to a document element that is absolutely
positioned using the CSS attribute, and the and CSS attributes must
be expl
object

beginD
handle nt.
The ha t,
and the handler for the mouseup event is responsible for deregistering itself and the
mousemove handler. It is important to note that the mousemove and mouseup handlers
are registered as capturing event handlers, because the user can move the mouse faster
than the document element can follow it, and some of these events occur outside of the
origina
functio d within
beginD
and loc
implem

Exam l 2 event model
/**
 * Drag.js:
 * This function is designed to be called from a mousedown event
handler.
 * It
and
 * mou
the
 * specified document element. The first argument must be an absolutely
 * positioned document element. It may be the element that received the
 * mousedown event or it may be some containing element. The second
 * argument must be the event object for the mousedown event.
 **/
function beginDrag(elementToDrag, event) {
 //
 //
attrib
 //
 va

rag() takes two arguments. The fi

position left top
icitly set to pixel values in a style attribute. The second argument is the event
associated with the triggering mousedown event.

rag() records the position of the mousedown event and then registers event
rs for the mousemove and mouseup events that will follow the mousedown eve
ndler for the mousemove event is responsible for moving the document elemen

l target element. Also, note that the moveHandler() and upHandler()
ns that are registered to handle these events are defined as functions neste
rag(). Because they are defined in this nested scope, they can use the arguments
al variables of beginDrag(), which considerably simplifies their
entation.

ple 19-2. Dragging with the DOM Leve

registers temporary capturing event handlers for the mousemove

seup events that will follow and uses these handlers to "drag"

 Figure out where the element currently is
 The element must have left and top CSS properties in a style
ute
 Also, we assume they are set using pixel units
r x = parseInt(elementToDrag.style.left);

 var y = parseInt(elementToDrag.style.top);

 // Compute the distance between that point and the mouse-click
 //
 va
 va

 // Register the event handlers that will respond to the mousemove
 // and mouseup events that follow this mousedown event. Note that
 // these are registered as capturing event handlers on the
document.
 // These event handlers remain active while the mouse button
remains
 // pressed and are removed when the button is released.
 document.addEventListener("mousemove", moveHandler, true);
 do

 //
 ev
 ev

 /**
 * This is the handler that captures mousemove events when an
element
 * is being dragged. It is responsible for moving the element.
 *
 fu
 // Move the element to the current mouse position, adjusted as
 // necessary by the offset of the initial mouse-click
 elementToDrag.style.left = (event.clientX - deltaX) + "px";
 elementToDrag.style.top = (event.clientY - deltaY) + "px";

 // And don't let anyone else see this event

 }

 /*
 * This is the handler that captures the final mouseup event that
 * occurs at the end of a drag

ter the capturing event handlers
 document.removeEventListener("mouseup", upHandler, true);
 document.removeEventListener("mousemove", moveHandler, true);
 // And don't let the event propagate any further

 The nested moveHandler function below needs these values
r deltaX = event.clientX - x;
r deltaY = event.clientY - y;

cument.addEventListener("mouseup", upHandler, true);

 We've handled this event. Don't let anybody else see it.
ent.stopPropagation();
ent.preventDefault();

*/
nction moveHandler(event) {

 event.stopPropagation();

*

 **/
 function upHandler(event) {
 // Unregis

 event.stopPropagation();
 }
}

You can use beginDrag() in an HTML file like the following (which is a simplified
version of Example 19-2 with the addition of dragging):

<script src="Drag.js"></script> <!-- Include the Drag.js script --
<!-- Define the elemen to be dragged -->
<div style="position:a

>
t
bsolute; left:100px; top:100px;

 background-color: white; border: solid black;">
<!-- Define the "handle" to drag it with. Note the onmousedown
attribute. -->
<div style="background-color: gray; border-bottom: dotted black;
 padding: 3px; font-family: sans-serif; font-weight: bold;"
 onmousedown="beginDrag(this.parentNode, event);">
Drag Me <!-- The content of the "titlebar" -->
</div>

st.<p>Test.

The key here is the onmousedown attribute of the inner <div> element. Although
beginDrag() uses the DOM Level 2 event model, we register it here using the Level 0
model for convenience. As we'll discuss in the next section, the event models can be

s

ser

inDrag(this, event);">

nt model and the new standard DOM
Level 2 model. For backward compatibility, browsers that support the Level 2 model will
continue to support the Level 0 event model. This means that you can mix event models
within a document, as we did in the HTML fragments used to demonstrate the element-
dragging script in the previous section.

It is important to understand that web browsers that support the Level 2 event model
s -- even handlers regist

dler

properties like onclick for HTML elements that support an onclick attribute. However,

<!-- Content of the dragable element -->
>This is a test. Testing, testing, testing.<p>This is a te<p

</div>

mixed, and when an event handler is specified as an HTML attribute, the event object i
available using the event keyword. (This is not part of the DOM standard but is a
convention of the Netscape 4 and IE event models, which are described later.)

Here's another simple example of using beginDrag(); it defines an image that the u
can drag, but only if the Shift key is held down:

<script src="Drag.js"></script>
<img src="plus.gif" width="20" height="20"
style="position:absolute; left:0px; top:0px;"
onmousedown="if (event.shiftKey) beg

Note the differences between the onmousedown attribute here and the one in the previous
example.

19.2.8 Mixing Event Models

So far, we've discussed the traditional Level 0 eve

always pass an event object to event handler ered by setting an
HTML attribute or a JavaScript property using the Level 0 model. When an event han
is defined as an HTML attribute, it is implicitly converted to a function that has an
argument named event. This means that such an event handler can use the identifier
event to refer to the event object.

The DOM standard never formalized the Level 0 event model. It does not even require

the standard recognizes that the Level 0 event model will remain in use and specif
implementations that support the Level 0 model treat hand
as if they were registered using

ies that
lers registered with that model

addEventListener(). That is, if you assign a function
 to the property of a document element (or set the corresponding H
o

e.addEventListener("click", f, false);

When f() is invoked, it is passed an event object as its argument, even though it was
registered using the Level 0 model. Furthermore, if you change the value of the onclick
property from function f to function g, it is equivalent to this code:

e.removeEventListener("click", f, false);
e.addEventListener("click", g, false);

Note, however, that the Level 2 specification does not say whether an event handler
registered by assigning to the onclick property can be removed by calling
removeEventListener(). At the time of this writing, the Mozilla/Netscape
implementation does not allow this.

er

f events and verify that the result is the same. It could also be
implement a macro playback facility to automate commonly performed user-interface

uitable for producing self-
running demo programs: you can create a synthetic mousemove event and deliver it to the

s in your application, but this does not actually cause the mouse

Netscape 6, nor by the current version of Mozilla.

To create an event object, call the createEvent() method of the Document object. This

f onclick e TML
nclick attribute), it is equivalent to registering that function as follows:

19.2.9 Synthesizing Events

The DOM Level 2 standard includes an API for creating and dispatching synthetic
events. This API allows events to be generated under program control rather than und
user control. Although this is not a commonly needed feature, it can be useful, for
example, to produce regression tests that subject a DHTML application to a known
sequence o used to

actions. On the other hand, the synthetic event API is not s

appropriate event handler
pointer to move across the screen!

Unfortunately, at the time of this writing, the synthetic event API is not supported by

To generate a synthetic event, you must complete three steps:

• Create an appropriate event object.
• Initialize the fields of the event object.
• Dispatch the event object to the desired document element.

method takes a single argument, which is the name of the event module for which an

event object should be created. For example, to create an event object suitable for use
with a click event, call the method as follows:

s, call it like

document.createEvent("MouseEvents");

Note that the argument to createEvent() is plural. This is counte tive, but it is the
ing that you'd pass to the hasFeature() method to test whether a browser

After creating an event object, the next step is to initialize its properties. The properties of
event objects are always read-only, however, so you cannot directly assign values to

 earlier

ng the properties of the
event. This initialization method has a name that depen n the type of event object to

there are properties to be set. Note that
fore dispatching a synthetic event: you

use these methods to modify the properties of an event object that is passed to an
event handler.

with an method, as follows:

 event
nt(

roperties
t properties

 false, false, false, false,

actual event type is passed to the event initialization method. The DOM st ot
hat you use one of the predefined names. You may create events using any event

document.createEvent("HTMLEvents");

To create an event object suitable for use with any of the mouse event type
this instead:

rintui
same str
supports an event module.

them. Instead, you must call a method to perform the initialization. Although the
descriptions of the Event, MouseEvent, and other event objects mentioned only
properties, each object also defines a single method for initializi

ds o
be initialized and is passed as many arguments as

 call an event initialization method only beyou can
nnot ca

Let's look at a couple of examples. As you know, click events are part of the
TMLEvents module and use event objects of type Event. These objects are initialized H

initEvent()

e.initEvent("click", "true", "true");

On the other hand, mousedown events are part of the MouseEvents module and use
objects of the MouseEvent type. These objects are initialized with an initMouseEve

at takes many more arguments:) method th

e.initMouseEvent("mousedown", true, false, // Event p
 window, 1, // UIEven

 0, 0, 0, 0, // MouseEvent properties

 0, null);

Note that you pass only the event module name to createEvent(). The name of the
andard does n

require t

type name you choose, as long as it does not begin with a digit or with the prefix "DOM"
(in uppercase, lowercase, or mixed case). If you initialize a synthetic event with a custom

dlers with that event type name as well.

ent object, you can dispatch it by passing it to the
dispatchEvent() is

d of any document node
that supports the addEventListener() and removeEventListener() methods. The

the event object you created is passed to any event handlers that were
ly, when
value is

your event
object and is true otherwise.

el
rmediate model,

 that occur.

Ins of being passed to event handler functions, however, the Event object is made
ailable as a property of the Window object. The IE model supports event propagation

model does. In IE 4, event handlers are
gistered in the same way as they are in the original Level 0 model. In IE 5 and later,

ho nonstandard) registration
fu

by
del.

ost important properties of the IE Event object are:

type

event type name, you must register event han

After creating and initializing an ev
dispatchEvent() method of the appropriate document element.
defined by the EventTarget interface, so it is available as a metho

element to which you dispatch an event becomes the event target, and the event object
goes through the usual sequence of event propagation. At each stage of event
propagation,
registered for the event type you specified when you initialized the event. Final

 return event propagation finishes, your call to dispatchEvent() returns. The
false if any of the event handlers called the preventDefault() method on

19.3 The Internet Explorer Event Mod
The event model supported by Internet Explorer 4, 5, 5.5, and 6 is an inte
halfway between the original Level 0 model and the standard DOM Level 2 model. The
IE even

tead
t model includes an Event object that provides details about events

av
by bubbling, but not by capturing, as the DOM
re

wever, multiple handlers may be registered with special (but
nctions.

The following sections provide more detail about this event model and document it
comparison to the original Level 0 event model and the standard Level 2 event mo
Therefore, you should be sure you understand those two event models before reading
about the IE model.

19.3.1 The IE Event Object

Like the standard DOM Level 2 event model, the IE event model provides details about
each event that occurs in the properties of an Event object. The Event objects defined in
the standard model were in fact modeled on the IE Event object, so you'll notice a
number of similarities between the properties of the IE Event object and the properties of
the DOM Event, UIEvent, and MouseEvent objects.

The m

A string that specifies the type of event that occurred. The value of this property
the name of the event handler with the leading "on" removed (e.g., "click" or
"mouseover"). Compatible with the type property of the DOM Event

is

object.

srcElement

button

An integer that specifies the mouse button that was pressed. A value of 1 indicates
. If

the button

clientX , clientY

These integer properties specify the mouse coordinates at the time of the event,

 to

offsetX, offsetY

These integer properties specify the position of the mouse pointer relative to the
source element. They enable you to determine which pixel of an Image object was
clicked on, for example. These properties have no equivalent in the DOM Level 2
event model.

altKey , ctrlKey, shiftKey

These boolean properties specify whether the Alt, Ctrl, and Shift keys were held
down when the event occurred. These properties are compatible with the
properties of the same name in the DOM Level 2 MouseEvent object. Note,
however, that the IE Event object does not have a metaKey property.

The document element on which the event occurred. Comparable to the target
property of the DOM Event object.

the left button, 2 indicates the right button, and 4 indicates the middle button
multiple buttons are pressed, these values are added together -- the left and right
buttons together produce a value of 3, for example. Compare this with
property of the DOM Level 2 MouseEvent object, but note that although the
property names are the same, the interpretation of the property values differs.

relative to the upper-left corner of the containing window. Note that for
documents that are larger than the window, these coordinates are not the same as
the position within the document, and you may want to add the values
document.body.scrollLeft and document.body.scrollTop, respectively,
account for scrolling. These properties are compatible with the DOM Level 2
MouseEvent properties of the same name.

keyCode

ts and
e()

ent model does not
standardize key events (although DOM Level 3 is working on this) and has no

fromElement , toElement

fromElement specifies the document element that the mouse used to be over for
mouseover events. toElement specifies the document element that the mouse has
moved to for mouseout events. Comparable to the relatedTarget property of the
DOM Level 2 MouseEvent object.

e

A boolean property that can be set to to prevent the browser from

ique of returning false from the event handler. Comparable

You can find complete documentation for the IE Event object in the client-side reference
section of this book.

ent would do,
the IE scheme works because it is implicit in the event-driven programming model that

at a time. Since two events are never handled

currently being processed.

This integer property specifies the key code for keydown and keyup even
the Unicode character code for keypress events. Use String.fromCharCod
to convert character codes to strings. The DOM Level 2 ev

equivalent to these properties.

cancelBubble

A boolean property that, when set to true, prevents the current event from
bubbling any further up the element containment hierarchy. Comparable to th
stopPropagation() method of the DOM Level 2 Event object.

returnValue

false
performing the default action associated with the event. This is an alternative to
the traditional techn
to the preventDefault() method of the DOM Level 2 Event object.

19.3.2 The IE Event Object as a Global Variable

Although the IE event model provides event details in an Event object, it never passes
Event objects as arguments to event handlers. Instead, it makes the Event object available
as the event property of the global Window object. This means that an event handling
function in IE can refer to the Event object as window.event or simply as event.
Although it seems strange to use a global variable where a function argum

only one event is ever being processed
concurrently, it is safe to use a global variable to store details on the event that is

The fact that the Event object is a global variable is incompatible with the standard DOM
f you want to write an event

pects
an argument, and then, if no argument is passed, initialize th obal

 if (!e) e = window.event; // Get event details for IE

 // Body of the event handler goes here
}

, events do bubble up through the containment hierarchy in the IE

oes
o prevent an

event from bubbling or stop it from bubbling any further up the containment hierarchy,
an IE event handler must set the cancelBubble property of the Event object to true:

window.event.cancelBubble = true;

Note that setting cancelBubble applies only to the current event. When a new event is
generated, a new Event object is assigned to window.event, and cancelBubble is
restored to its default value of false.

19.3.4 IE Event-Handler Registration

In IE 4, event handlers are registered in the same way they are in the original Level 0
event model: by specifying them as HTML attributes or assigning functions to the event
handler properties of document elements. The only difference is that IE 4 allows access
to (and event-handler registration on) all of the elements in a document, instead of just
t

nd detachEvent() methods, which
r function for a given event type on a

t. These methods work like addEventListener() and
removeEventListener(), except that since the IE event model does not support event
capturing, they expect only two arguments: the event type and the handler function. Also,

od

Level 2 event model, but there is a one-line workaround. I
handler function that works with either event model, write the function so that it ex

e argument from the gl
variable. For example:

function portableEventHandler(e) {

19.3.3 Event Bubbling in IE

The IE event model does not have any notion of event capturing, as the DOM Level 2
model does. However
model, just as they do in the Level 2 model. As with the Level 2 model, event bubbling
applies only to raw or input events (primarily mouse and keyboard events), not to higher-
level semantic events. The primary difference between event bubbling in the IE and
DOM Level 2 event models is the way that you stop bubbling. The IE Event object d
not have a stopPropagation() method, as the DOM Event object does. T

he form, image, and link elements that are accessible with the Level 0 DOM.

IE 5 and later introduce the attachEvent() a
ay to register more than one handleprovide a w

 objecgiven

unlike with the Level 2 event model, the event handler names passed to the IE meth

should include the "on" prefix: use "onclick" instead of just "click". You can use

andler code goes here */ }
document.getElementById("myelt").attachEvent("onmouseover", highlight);

functions registered with at s
 of the document element on which the event occurred. That is, when an event

 registered with executes, the keyword refers to the

19.3.5 Example: Dragging with the IE Event Model

attachEvent() to register an event handler as follows:

function highlight() { /* Event-h

Another difference between attachEvent() and addEventListener() is that
tachEvent() are invoked as global functions, rather than a

methods
ndlerha attachEvent() this

Window object, not to the event's target element.

Example 19-3 is a modified version of the b
xample 19-2

eginDrag() function that was presented in
E . This version includes code that makes it work with the IE event model, in

n addition to the DOM Level 2 event model. The design and intended usage of this versio
me as in Example 19-2of beginDrag() are the sa , so if you understood that example,

you should have no trouble understanding this one. What makes this example interesting
is that it juxtaposes two event models, clearly highlighting their differences.

The biggest difference in the IE version of the code is that it must rely on event bubbling
rather than event capturing. This usually works, but it is not the ideal solution for this
problem. Another important difference to note is that IE event handlers are not passed an
Event object. Note that the code in this example also distinguishes between IE 5 and
later, which support attachEvent(), and IE 4, which does not. See the discussion of
Example 19-2 for a sample HTML document that is designed to use this beginDrag()
function.

Example 19-3. Dragging with the IE event model
/**
 * PortableDrag.js:
 * beginDrag() is designed to be called from an onmousedown event
handler.
 * elementToDrag may be the element that received the mousedown event,
or it
 * may be some containing element. event must be the Event object for
the
 * mousedown event. This implementation works with both the DOM Level 2
 * event model and the IE event model.
 **/
function beginDrag(elementToDrag, event) {
 // Compute the distance between the upper-left corner of the
element
 // and the mouse-click. The moveHandler function below needs these
values.
 var deltaX = event.clientX - parseInt(elementToDrag.style.left);
 var deltaY = event.clientY - parseInt(elementToDrag.style.top);

 // Register the event handlers that will respond to the mousemove
events
 // and the mouseup event that follow this mousedown event.
 if (document.addEventListener) { // DOM Level 2 Event Model
 // Register capturing event handlers
 document.addEventListener("mousemove", moveHandler, true);
 document.addEventListener("mouseup", upHandler, true);
 }
 else if (document.attachEvent) { // IE 5+ Event Model
 // In the IE event model, we can't capture events, so these
handlers
 // are triggered only if the event bubbles up to them.
 // This assumes that there aren't any intervening elements that
 // handle the events and stop them from bubbling.
 document.attachEvent("onmousemove", moveHandler);
 document.attachEvent("onmouseup", upHandler);
 }
 else { // IE 4 Event Model
 // In IE 4 we can't use attachEvent(), so assign the event
handlers
 // directly after storing any previously assigned handlers, so
they
 // can be restored. Note that this also relies on event
bubbling.
 var oldmovehandler = document.onmousemove;
 var olduphandler = document.onmouseup;
 document.onmousemove = moveHandler;
 document.onmouseup = upHandler;
 }

 // We've handled this event. Don't let anybody else see it.
 if (event.stopPropagation) event.stopPropagation(); // DOM Level
2
 else event.cancelBubble = true; // IE

 // Now prevent any default action.
 if (event.preventDefault) event.preventDefault(); // DOM Level
2
 else event.returnValue = false; // IE

 /**
 * This is the handler that captures mousemove events when an
element
 * is being dragged. It is responsible for moving the element.
 **/
 function moveHandler(e) {
 if (!e) e = window.event; // IE Event Model

 // Move the element to the current mouse position, adjusted as
 // necessary by the offset of the initial mouse-click.
 elementToDrag.style.left = (e.clientX - deltaX) + "px";
 elementToDrag.style.top = (e.clientY - deltaY) + "px";

 // And don't let anyone else see this event.
 if (e.stopPropagation) e.stopPropagation(); // DOM Level 2
 else e.cancelBubble = true; // IE
 }

 /**
 * This is the handler that captures the final mouseup event that
 * occurs at the end of a drag.
 **/
 function upHandler(e) {
 if (!e) e = window.event; // IE Event Model

 // Unregister the capturing event handlers.
 if (document.removeEventListener) { // DOM Event Model
 document.removeEventListener("mouseup", upHandler, true);
 document.removeEventListener("mousemove", moveHandler,
true);
 }
 else if (document.detachEvent) { // IE 5+ Event Model
 document.detachEvent("onmouseup", upHandler);
 document.detachEvent("onmousemove", moveHandler);
 }
 else { // IE 4 Event Model
 document.onmouseup = olduphandler;

 // And don't let the event propagate any further.
 if (e.stopPropagation) e.stopPropagation(); // DOM Level 2

The Netscape 4 event model is like the original Level 0 event model, except that it
provides event details in an Event object that is passed as an argument to handler
functions. It also supports special methods to enable event capturing. These features are

t
various DOM Level

2 event objects. The key Event properties in the Netscape 4 event model are:

type

 document.onmousemove = oldmovehandler;
 }

 else e.cancelBubble = true; // IE
 }
}

19.4 The Netscape 4 Event Model

explained in the sections that follow.

19.4.1 The Netscape 4 Event Object

The Netscape 4 event model defines an Event object that contains details about the event
that occurred. Like the DOM Level 2 model, it passes an Event object as an argument to
all event handlers. Unfortunately, however, the properties of the Netscape 4 Event objec
are almost entirely different than those of the IE Event object and the

A string that specifies the type of event that occurred. This string is the name of
the event handler, minus the "on" prefix (e.g., "click" or "mousedown"). This
property is compatible with the IE and DOM Level 2 Event objects.

The docum ent on which the event occurred. This property is compatible
with the target property of the DOM Level 2 Event object and comparable to

n

t coordinates. Comparable to
ject and

hich

operty contains the Unicode encoding of the key that was pressed.
Compare this to the keyCode property of the IE Event object.

modifiers

An integer that specifies which keyboard modifier keys were pressed when the

 properties of the DOM Level 2 MouseEvent object and the IE Event

en an

nverted to a function with an argument named event. This means that
e

target

ent elem

srcElement in the IE Event object.

pageX , pageY

These properties specify the pixel coordinates at which the event occurred,
relative to the upper-left corner of the window. For documents that are larger tha
the window, you need to add in the offsets window.pageXOffset and
window.pageYOffset to convert these to documen
the clientX and clientY properties of the DOM Level 2 MouseEvent ob
the IE Event object.

w

An integer that specifies which mouse button or key was pressed. For mouse
events, the left, middle, and right buttons are specified by the values 1, 2, and 3,
respectively. Compare this to the (mutually incompatible) button properties of
the DOM Level 2 MouseEvent object and the IE Event object. For keyboard
events, this pr

event occurred. The value is a bitmask comprised of any of the following values:
Event.ALT_MASK, Event.CONTROL_MASK, Event.META_MASK, and
Event.SHIFT_MASK. Comparable to the altKey, ctrlKey, metaKey, and
shiftKey
object.

In the Netscape 4 event model, an Event object is passed to all event handlers. Wh
code in an HTML attribute, that code is event handler is defined as a string of JavaScript

implicitly co
HTML event handlers can refer to the Event object with the identifier event. (Compar

this to the IE model, in which the identifier refers to the global Event object. Theevent
plementations are quite different, but the practical result is the same.)

or backward compatibility, the Event objects used by Mozilla and Netscape 6

The Netscape 4 event model does not support event bubbling, as the IE event model does,
but it does support a limited form of event capturing, like the DOM Level 2 model does.
(In fact, the event-propagation model for the DOM standard is a combination of the
Netscape capturing and IE bubbling models.) Although Netscape 4 supports a form of
event capturing, the way it works is quite different from that defined by the DOM Level 2
event model.

In Netscape 4, the Window, Document, and Layer objects may request the opportunity to
preview certain types of events before they are processed by the elements that generated
them. Such a request is made with the captureEvents() method of these objects. The
argument to this method specifies the type of events to be captured; it is a bitmask
composed of constants defined as static properties of the Event constructor. So, for
example, if a program wants all mousedown and mouseup events to be routed to the
Window object before being handled by the object for which they were intended, it can
call captureEvents() like this:

t

window.onmouseup = function(event) { ... };

tes
no further. In other circumstances, however, the program wants to pass the event along. If

 method of the Window, Document, and Layer
objects, the method passes the event to the next Window, Document, or Layer object that

 // Handle the event here, and do nothing else

im

F
implement most of the properties of the Netscape 4 Event object, with the notable
exception, at the time of this writing, of the modifiers property.

19.4.2 Event Capturing in Netscape 4

window.captureEvents(Event.MOUSEDOWN | Event.MOUSEUP);

Having made this request to receive the events, the program then has to register even
handlers for those events:

window.onmousedown = function(event) { ... };

When one of these capturing event handlers receives an event, it gets to decide what
ould happen to it next. In some programs, a captured event is handled and propaga

sh

you pass the event to the routeEvent()

has used captureEvents() to specify interest in that type of event. Or, if there is no
other capturing object to which to route the event, it is routed to its original source object
and the appropriate event handler of that object is invoked. For example:

function clickHandler(event) {
 if (event.which == 3) { // It is the right mouse button

 // The event will not propagate any further
 }
 else { // It is not the right mouse button
 // We're not interested in this event, so let it propagate on

 }

routeEvent() e Event object to the
handleEvent() method of the object to which you want the event delivered. The

f that object.

 to capture events, it
should call the releaseEvents() method, specifying the same argument it passed to
captureEvents().

M
 events

ent the
l.

19.4.3 Example: Dragging with the Netscape 4 Event Model

 // to some element that is interested in it
 window.routeEvent(event);

}

An alternative to calling is to simply pass th

handleEvent() method passes the event to the appropriate event handler o

When a Window, Document, or Layer object no longer wishes

The Netscape 4 event-capturing model is fundamentally incompatible with the DO
Level 2 event-capturing model. For example, the DOM model propagates captured
by default, but the Netscape model does not. Mozilla and Netscape 6 implem
Netscape 4 event-capturing API, but the API appears to be nonfunctiona

Example 19-4 is an implementation of our familiar beginDrag() method, using the
Netscape 4 event model (and the Netscape 4 Layer-based DOM). It demonstrates how
events are captured and how event handlers are written for this event model. This
example includes both JavaScript code and a simple HTML document that uses the
beginDrag() method to define an image that the user can drag. Compare this
implementation of beginDrag() to the two we've seen previously. Note that this
example defines its nested event handler functions at the beginning of the beginDrag()
function instead of at the end. This is a bug workaround: if the nested functions are
placed at the end of , they do not work in Netscape 4. Also note the beginDrag()

rom the DOM Level 2 and IE APIs.[2]

onmousedown handler at the end of the example: it allows dragging only if the Shift key
is held down and tests for this modifier key using the Netscape 4 Event object API, which
is significantly different f

 not retained compatibility with the modifiers property of the Netscape 4
Event object, so the onmousedown handler shown here works only in Netscape 4, not in Netscape 6.

Example 19-4. Dragging in Netscape 4
<script>
/**
 * This function is intended for use in a mousedown event handler of an

[2] At the time of this writing, Mozilla and Netscape 6 have

object
 * within a layer. The first argument must be a Layer object. The
second
 * argument must be the Event object for the mousedown event.

 **/
function beginDrag(layerToDrag, event) {
 // This nested function responds to mousemove events and moves the
layer
 function moveHandler(event) {
 // Move the element to the current mouse position, adjusted as
 // necessary by the offset of the initial mouse-click
 layerToDrag.moveTo(event.pageX - deltaX, event.pageY-deltaY);

 // Don't take any default action, and don't propagate further
 return false;

 }

ion handles mouseup events
 // It stops capturing events and deregisters the handlers
 function upHandler(event) {
 // Stop capturing and handling drag events
 document.releaseEvents(Event.MOUSEMOVE | Event.MOUSEUP);
 document.onmousemove = null;
 document.onmouseup = null;

 // Don't take any default action, and don't propagate further

yer

se-click. The moveHandler function below needs these

 // Arrange to capture mousemove and mouseup events
 defined below
SEUP);

 document.onmousemove = moveHandler;

Drag(window.document.div1, event);">
</div>

 // This nested funct

 return false;
 }

 // Compute the distance between the upper-left corner of the la
and
 // the mou
values.
 var deltaX = event.pageX - layerToDrag.left;
 var deltaY = event.pageY - layerToDrag.top;

 // Then arrange to handle them using the functions
 document.captureEvents(Event.MOUSEMOVE | Event.MOU

 document.onmouseup = upHandler;
}
</script>
<!-- Here's how we might use beginDrag() in Netscape 4 -->
<!-- Define a layer using CSS attributes -->
<div id="div1" style="position:absolute; left:100px; top:100px;">
<!-- Give the layer some content and a mousedown event handler -->
<img src="plus.gif" width="20" height="20"
 onmousedown="if (event.modifiers & Event.SHIFT_MASK)
 begin

Chapter 20. Compatibility Techniques
JavaScript, like Java, is one of a new breed of platform-independent languages. That is,
you can develop a program in JavaScript and expect to run it unchanged in a JavaScript-
enabled web browser running on any type of computer with any type of operating system.
Though this is the ideal, we live in an imperfect world and have not yet reached that state
of perfection.

There are, and probably always will be, compatibility problems that JavaScript
programmers must bear in mind. The one fact that we must always remember is that it is
a heterogeneous network out there. Your JavaScript programs may run on three or more
operating systems, using three or more versions of browsers from at least two different
vendors. This can be difficult to keep in mind for those of us who come from the
nonportable past, when programs were developed on a platform-specific basis.
Remember: which platform you develop a program on doesn't matter. It may work fine
on that platform, but the real test is whether it works (or fails gracefully) on all platforms
on which it is used.

The compatibility issues fall into two broad categories: platform-specific, browser-
specific, and version-specific features on one hand; and bugs and language-level

ity of JavaScript

When developing production-quality JavaScript code, testing and knowledge of platform-
ecific, vendor-specific, and version-specific incompatibilities are your chief allies. If

you know, for example, that Netscape 2 on Macintosh platforms always gets the time
wrong by about an hour, you can take steps to deal with this problem. If you know that
Netscape 2 and 3 on Windows platforms do not automatically clear your setting of the

se

Knowledge of existing incompatibilities is crucial to writing compatible code.

incompatibilities, including the incompatibil with non-JavaScript
browsers, on the other. This chapter discusses techniques for coping with compatibility
issues in both of these areas. If you've worked your way through all the previous chapters
in this book, you are probably an expert JavaScript programmer, and you may already be
writing serious JavaScript programs. Don't release those programs on the Internet (or
onto a heterogeneous intranet) before you've read this chapter, though!

20.1 Platform and Browser Compatibility

sp

status line when the mouse moves off a hypertext link, you can provide an appropriate
event handler to explicitly clear the status line. If you know that Internet Explorer 4 and
Netscape 4 support vastly different Dynamic HTML models, you can write pages that u
the appropriate mechanism depending on the browser in use.

Unfortunately, producing a definitive listing of all known vendor, version, and platform
incompatibilities would be an enormous task. It is beyond the scope and mission of this
book, and it has apparently never even been seriously attempted. You may find some
assistance on the Internet, but you will have to rely primarily on your own experience and

testing. Once you have identified an area of incompatibility, however, there are a number
ing sections.

atibilities is to avoid them like the plague. For

t

of basic approaches you can take to coping with it, as described in the follow

20.1.1 The Least-Common-Denominator Approach

One technique for dealing with incomp
example, the Date object is notoriously buggy in Netscape 2. If you want Netscape 2

 object ausers to be able to use your programs, you can simply avoid relying on the Date
all.[1]

[1] I don't actually recommend doing this. At the time of this writing, Netscape 2 is so far out of date that it is safe to ignore it.

-denominator approach says
tead,

ou can create an equivalent property of your own whenever you open a new window:

newwin = window.open("", "new", "width=500, height=300");
newwin.creator = self;

If you consistently set a creator property for each new window you create, you can rely
on that property instead of the nonportable opener property. (Another alternative, as
we'll see later, is to give up on compatibility with Netscape 2 and require a browser that
supports JavaScript 1.1 or later, as all such browsers support the opener property.)

With this technique, you use only features that are known to work on all your target
ut it

20.1.2 Defensive Coding

code that contains
. For example,

s that

ing with incompatibilities. If you want to
ript that
ted on the

As another example, Netscape 3 and IE 3 both support the opener property of the
Window object, but Netscape 2 does not. The least-common

ld not use this property if compatibility with Netscape 2 is a goal. Insthat you shou
y

platforms. It doesn't allow you to write cutting-edge programs or push the envelope, b
results in portable, safe programs that can serve many important functions.

With the defensive coding approach to compatibility, you write
platform-independent workarounds for platform-specific incompatibilities
if you set the status property of a Window object from the onmouseover event handler
to display a custom message in the status line, the status line is cleared when you move
the mouse off the hyperlink, except in Windows versions of Netscape 2 and 3. To correct
for this problem, you could get in the habit of including an onmouseout event handler to
clear the status line. This precaution fixes the bug in current (and future) platform
have it and doesn't do any harm on platforms that don't have the bug.

20.1.3 Feature Testing

Feature testing is a powerful technique for cop
use a feature that may not be supported by all browsers, include code in your sc
tests to see whether that feature is supported. If the desired feature is not suppor

current platform, either do not use it on that platform or provide alternative code that
platforms.

onsider again the opener property. In the least-common-denominator approach, we
simply avoided the use of this property and used an alternative on all platforms. With the
feature-testing approach, we provide the alternative only when the current platform does

rks
the existence of methods. For example, the split() method of the String

d like to use
uilt-in method on those platforms that do support it. Thus, our feature-testing

 is safe to invoke it

ting is commonly used for performing DHTML effects that are supported only
 or are implemented differently in different browsers. For example, if

fects, you can use feature testing

ages) { // If the browser defines an images[] array,

}
// Otherwise, we simply omit the image rollover effect

ure
testing to see which API is supported by the current browser with code like this:

OM API

f (document.all) { // If the IE 4 API is supported,
 // do our DHTML using the IE 4 API
}
else if (document.layers) { // If the Netscape 4 API is supported,
 // do the DHTML effect (as best we can) using the Netscape 4 API
}

works on all

C

not support opener:

newwin = window.open("", "new", "width=500, height=300");
if (!newwin.opener) newwin.opener = self;

Note how we tested for the existence of the opener property. The same technique wo
to test for
object exists only for JavaScript 1.1 implementations. We can write our own version of
this function that works in all versions of JavaScript, but for efficiency we'
the fast, b
code to split() a string might end up looking like this:

if (s.split) // Check if the method exists, without
invoking it
 a = s.split(":"); // If it does exist, it

else // Otherwise:
ion a = mysplit(s, ":"); // use our alternative implementat

Feature tes
on some browsers
you are designing a site that includes image rollover ef
with code like this:

if (docu
 // we include image rollover code here

ment.im

As another example, suppose we want to work with a dynamically positioned document
element. Different browsers have different APIs for doing this, so we first use feat

if (document.getElementById) { // If the W3C DOM API is supported,
 // do our DHTML using the W3C D
}
else i

else { // Otherwise, DHTML is not supported,
 // so provide a static alternative to DHTML, if we can
}

Feature testing is well suited to checking for support of large functional areas. You can
API,

s
ence

ed
e

The nice thing about the feature-testing technique is that it results in code that is not tied
to a specific list of browser vendors or browser version numbers. It works with the set of
browsers that exist today and should continue to work with future browsers, whatever
feature sets they implement.

20.1.4 Platform-Specific Workarounds

use it to determine whether a browser supports image rollovers or the W3C DOM
for example. On the other hand, sometimes you may need to work around individual bug
or quirks in a particular browser, and there may be no easy way to test for the exist
of the bug. In this case, you will need to create a platform-specific workaround that is ti
to a particular browser vendor, version, or operating system (or some combination of th
three).

Recall from Chapter 13 that the navigator property of the Window object provides
information about the vendor and version of the browser and the operating system on
which it is running. You can use this information to insert platform-specific code into
your program.

An example of a platform-specific workaround involves the bgColor property of the
Document object. On Windows and Macintosh platforms, you can set this property at
runtime to change the background color of a document. Unfortunately, when you do this
on Unix versions of Netscape 2 and 3, the color changes but the document contents
temporarily disappear. If you wanted to create a special effect using a changing
background color, you could use the Netscape object to test for Unix platforms and
simply skip the special effect for those platforms. The code could look like this:

// Check whether we're running Netscape 2 or 3 on a Unix platform
var nobg = (parseInt(navigator.appVersion) < 4) && // Version

// If we're not, then go ahead and animate the page background color

ommon to use " client-sniffer" code
tform is, based (typically) on the properties of the

and it sets variables that
rse the properties of navigator

for each platform-specific bit of code you write; you can simply use the variables set by

 (navigator.appName.indexOf("Netscape") != -1) && // Vendor
 (navigator.appVersion.indexOf("X11") != -1); // OS

if (!nobg) animate_bg_color();

When writing platform-specific workarounds, it is c
to determine what the current pla
navigator object. You run your client-sniffer code once,

current platform. Then you don't have to repadescribe the

the sniffer code. A simple sniffer that may be sufficient for many purposes might look
like this:

var browserVersion = parseInt(navigator.appVersion);
var isNetscape = navigator.appName.indexOf("Netscape") != -1;
var isIE = navigator.appName.indexOf("Microsoft") != -1;
var agent = navigator.userAgent.toLowerCase();
var isWindows = agent.indexOf("win") != -1;
var isMac = agent.indexOf("mac") != -1;
var isUnix = agent.indexOf("X11") != -1;

With variables like these defined, you might write code like the following:

if (isNetscape && browserVersion < 4 && isUnix) {

r/browser_type.html

 // Work around a bug in Netscape 3 on Unix platforms here
}

A variety of prewritten client sniffers are available on the Internet. You can find a
thorough one (along with a helpful discussion of its use) at
http://www.mozilla.org/docs/web-developer/sniffe .

Server-Side Scripts

patibility is possible if your web application
se of server-side scripts, such as CGI scripts or server-side JavaScript. A

rogram on the server side can inspect the User-Agent field of the HTTP request header,
which allows it to determine exactly what browser the user is running. With this

s that do not require JavaScript at all. An
important drawback to this approach is that a server-side script cannot detect when a user
has disabled JavaScript support in her browser.

d

ring any incompatibility is, how important is
smetic, affects a browser or platform that is not

r affects only an out-of-date version of a browser, you might simply decide
lem and let the users affected by it cope with it on their own.

is

20.1.5 Compatibility Through

Another platform-specific approach to com
includes the u
p

information, the program can generate customized JavaScript code that is known to work
correctly on that browser. Or, if the server-side script detects that the user's browser does
not support JavaScript, it can generate web page

Note that the topics of CGI programming and server-side scripting in general are beyon
the scope of this book.

20.1.6 Ignore the Problem

An important question to ask when conside
it? If the incompatibility is minor or co
widely used, o
to ignore the prob

For example, earlier I suggested defining an onmouseout event handler to correct for the
fact that Netscape 2 and 3 for Windows do not correctly clear the status line.

 Netscape 2, so thUnfortunately, the onmouseout event handler is not supported in

workaround won't work for that platform. If you expect your application to have a lot of
etscape 2 on Windows and you think that it is really important to get that

status line cleared, you'll have to develop some other workaround. You could use
setTimeout() in your onmouseover event handler to arrange for the status line to be
cleared in two seconds. But this solution brings problems with it: what if the mouse is
still over the hypertext link and the status line shouldn't be cleared in two seconds? In this
case, a simpler approach might be to simply ignore the problem. This approach can easily
be justified, because Netscape 2 is by now well out of date; any users still relying on it
should be encouraged to upgrade.

lly

inally, there are some incompatibilities that cannot be ignored and cannot be worked
round. In these cases, your program should work correctly on all platforms, browsers,
nd versions that provide the needed features and fail gracefully on all others. Failing
racefully means recognizing that the required features are not available and informing
e user that he will not be able to use your JavaScript program.

ple, the image-replacement technique we saw during the discussion of images in
hapter 14

users who use N

20.1.7 Fail Gracefu

F
a
a
g
th

For exam
C does not work in Netscape 2 or Internet Explorer 3, and there is really no

ulate it. Therefore, we should not even attempt to run the
rogram on those platforms; instead, we should politely notify the user of the
compatibility.

Much of the rest of this chapter explains
chniques for doing so.

The previous section discussed general compatibility techniques that are useful for
oping with incompatibilities between different versions of browsers from different

vendors running on different platforms. This section addresses another compatibility
oncern: how to use new features of the JavaScript language in a way that does not cause

errors on browsers that do not support those features. Our goals are simple: we need to
prevent JavaScript code from being interpreted by browsers that don't understand it, and
we need to display special messages on those browsers that inform users that their

rowsers cannot run the scripts.

0.2.1 The language Attribute

he first goal is easy. As we saw in Chapter 12

workaround that can sim
p
in

Failing gracefully can be harder than it sounds.
te

20.2 Language Version Compatibility

c

c

b

2

T , we can prevent a browser from
attempting to run code that it cannot understand by setting the language attribute of the
script> tag appropriately. For example, the following <script> tag specifies that the

code it contains uses features of JavaScript 1.1 and that browsers that do not support that
ersion of the scripting language should not attempt to run it:

<

v

<script language="JavaScript1.1">
 // JavaScript 1.1 code goes here
</script>

at

Unfortunately, the language attribute is marred by the fact that specifying
language="JavaScript1.2" causes Netscape to behave in ways that are incompatible
with the ECMA-262 standard. For example, as we saw in Chapter 5

Note that the use of the language attribute is a general technique. When set to the string
"JavaScript1.2", the attribute prevents JavaScript 1.0 or 1.1 browsers from attempting to
run the code. At the time of this writing, the latest browsers (Netscape 6 and IE 6)
support language versions 1.0, 1.1, 1.2, 1.3, 1.4, and 1.5. If you write JavaScript code th
includes the try/catch exception-handling statement, for example, you should include it
in a <script> tag with language="JavaScript1.5" to prevent browsers that do not
understand this statement from trying to run it.

, setting the
language attribute to this value causes the == operator to perform equality comparisons
without doing any type conversions. And as we saw in Chapter 8, specifying
"JavaScript1.2" also causes the toString() method to behave quite differently. Unless
you explicitly want these new, incompatible behaviors, or unless you can carefully avoid
all incompatible features, you should avoid the use of language="JavaScript1.2".

ute
rs
or

e
t

age. Example 20-1

Note that the version numbers used by the language attribute match the version numbers
of Netscape's (and now Mozilla's) JavaScript interpreter. Microsoft's interpreter has more
or less followed the evolution of Netscape's, but bear in mind that the language attrib
is still somewhat vendor-specific: the language features supported by different vendo
for a given version number are not guaranteed to be the same. This is particularly so f
language="JavaScript1.2", but caution is advisable for other versions as well.
Unfortunately, there is no way to specify a specification version with the language
attribute. That is, you cannot write:

<script language="ECMAScript3">...</script>

20.2.2 Explicit Version Testing

The language attribute provides at least a partial solution to the problem of language
version compatibility, but it solves only half of the problem. We also need to be able to
fail gracefully for browsers that do not support the desired version of JavaScript. If w
require JavaScript 1.1, we'd like to be able to notify users of JavaScript 1.0 browsers tha
they cannot use the p shows how we can do this.

ort

-->

Example 20-1. A message for browsers that do not support JavaScript 1.1
<!-- Set a variable to determine what version of JavaScript we supp
-->
<!-- This technique can be extended to any number of language versions

<script language="JavaScript"> var _version = 1.0; </script>
<script language="JavaScript1.1"> _version = 1.1; </script>
<script language="JavaScript1.2"> _version = 1.2; </script>

<!-- Run this code on any JavaScript-enabled browser -->
<!-- If the version is not high enough, display a message -->
<script language="JavaScript">
 if (_version < 1.1) {
 document.write('<hr><h1>This Page Requires JavaScript 1.1</h1>');
 document.write('Your JavaScript 1.0 browser cannot run this
page.<hr>');
 }
</script>

<!-- Now run the actual program only on JavaScript 1.1 browsers -->
<script language="JavaScript1.1">
 // The actual JavaScript 1.1 code goes here
</script>

20.2.3 Suppressing Version-Related Errors

Example 20-1 showed how we can write JavaScript 1.1 code that JavaScript 1.0 browse
do not attempt to execute. What if we wanted to write JavaScript 1.2 code that JavaScri
1.1 browsers do not attempt to execute? We could use the language attribute to explicitly
specify "JavaScript1.2", but as we discussed earlier, this causes Netscape to behave
incompatibly. Unfortunately, JavaScript 1.2 adds a lot of new syntax to the language. If
you write code that uses a switch statement, an object initializer, or a function liter
then run that code on a JavaScript 1.1 browser, you'll cause runtime syntax errors.

rs
pt

al and

One way to work around this problem is simply to suppress any errors that occur on
JavaScript 1.1 browsers. Example 20-2 shows how this can be done using the onerror
error handler of the Window object (which was described in Chapter 13).

display -->
<!-- an error message and suppress any syntax errors that occur. -->
<script language="JavaScript1.1">
// If JavaScript 1.2 is not supported, fail gracefully
function suppressErrors() { return true; }
if (!_js12_) {
 window.onerror = suppressErrors;
 alert("This program requires a browser with JavaScript 1.2
support");
}

Example 20-2. Suppressing version-related errors
<!-- Check whether JavaScript 1.2 is supported -->
<script language="JavaScript1.2">var _js12_ = 1.2</script>

<!-- Now avoid the problems with JavaScript 1.2 on Netscape by running
-->
<!-- the following code on any browser that supports JavaScript 1.1. If
-->
<!-- the browser does not support JavaScript 1.2, however, we'll

// Now proceed with the JavaScript 1.2 code
</script>

20.2.4 Loading a New Page for Compatibility

Another approach to version compatibility is to load a web page that requires a specific
level of JavaScript support only after determining whether the browser provides that level
of support. Example 20-3 shows how this might be done with a short script that tests
whether JavaScript 1.2 is supported. If the browser supports this version, the script uses
the Location.replace() method to load in a new web page that requires JavaScript
1.2. If JavaScript 1.2 is not supported, the script displays a message saying that it is
required.

Examp
<head>
<scrip
// If JavaScript 1.2 is supported, extract a new URL from the portion
of
// our URL following the question mark, and load in that new URL
location.replace(location.search.substring(1));

// Enter a really long, empty loop, so that the body of this document
// doesn't get displayed while the new document is loading
for(var i = 0; i < 10000000; i++);
</script>
</head>
<body>
<hr size="4">
<h1>Th
Your b
supports JavaScript 1.2, such as Netscape 4 or Internet Explorer 4.
<hr i
</b y

The mo
JavaSc d in the search portion of the original URL; that
file is loaded only if JavaScript 1.2 is supported. Thus, if the file in this example has the

ne shown in this hyperlink:

le 20-3. A web page to test for JavaScript compatibility

t language="JavaScript1.2">

is Page Requires JavaScript 1.2</h1>
rowser cannot run this page. Please upgrade to a browser that

 s ze="4">
od >

st interesting thing about this example is that it is a generic one -- the name of the
ript 1.2 file to be loaded is encode

name testjs12.html, you can use it in URLs like the o

<a
href="http://my.isp.net/~david/utils/testjs12.html?../js/cooljs12.html"
>
Visit my cool JavaScript 1.2 page!

The other thing to note about Example 20-3 is that calling Location.replace() starts a
new page loading but does not immediately stop the current page from loading.

Therefore, the JavaScript code in this example enters a long, empty loop after it calls
replace(). This prevents the rest of the document from being parsed and displayed, s
that users of JavaScript 1.2 browsers do not see the message intended for users of

o

browsers that do not support JavaScript 1.2.

Finally, note that the technique shown in Example 20-3 is useful not only to distinguish
one version of JavaScript from another, but also to distinguish between browsers that
support JavaScript and those that do not. The next section discusses other compatibility
techniques that are useful with non-JavaScript browsers.

20.3 Compatibility with Non-JavaScript Browsers
The previous section discussed compatibility with browsers that do not support a
particular version of JavaScript. This section considers compatibility with browsers that
do not support JavaScript at all. These are either browsers that have no JavaScript
capability or browsers in which the user has disabled JavaScript (which some users do
because of security concerns). Because a number of such browsers are still in use, you
should design your web pages to fail gracefully when read into browsers that do not
understand JavaScript. There are two parts to doing this: first, you must take care to
ensure that your JavaScript code does not appear as if it were HTML text; and second,
you should arrange to display a message informing the visitor that her browser cannot
correctly handle the page.

wever (and there are still some out there),
at they ignore the
 to be displayed.

Unless you take steps to prevent it, users of these old browsers see your JavaScript code

20.3.1 Hiding Scripts from Old Browsers

Web browsers that support JavaScript execute the JavaScript statements that appear
between the <script> and </script> tags. Browsers that don't support JavaScript but
recognize the <script> tag simply ignore everything between <script> and </script>.
This is as it should be. Really old browsers, ho
do not even recognize the <script> and </script> tags. This means th
tags themselves and treat all the JavaScript between them as HTML text

formatted into big meaningless paragraphs and presented as web page content!

To prevent this, enclose the body of your script within an HTML comment, using the
format shown in Example 20-4.

Example 20-4. A script hidden from old browsers
<script language="JavaScript">
<!-- Begin HTML comment that hides the script
 // JavaScript statements go here
 // .
 // .
// End HTML comment that hides the script -->
</script>

Browsers that do not understand the <script> and </script> tags simply ignore the
Thus, lines one and seven in

m.
Example 20-4 have no effect on these browsers. They'll

ignore lines two through six as well, because the first four characters on line two beg
HTML comment and the last three characters on line six end that comment -- everything
in between is ignored by the HTML parser.

This script-hiding technique also works for bro

in an

wsers that do support JavaScript. Lines
one and seven indicate the beginning and end of a script. Client-side JavaScript
interpreters recognize the HTML comment-opening string <!-- but treat it as a single-
line comment. Thus, a browser with JavaScript support treats line two as a single-line
comment. Similarly, line six begins with the // single-line comment string, so that line is
ignored by JavaScript-enabled browsers as well. This leaves lines three through five,
which are executed as JavaScript statements.

While it takes a little getting used to, this simple and elegant mix of HTML and
JavaScript comments does exactly what we need: it prevents JavaScript code from being
displayed by browsers that do not support JavaScript. Although a declining number of
browsers require this type of commenting, it is still quite common to see it used in
JavaScript code on the Internet. The comments need not be as verbose as in Example 20-
4, of course. It is common to see scripts like this:

<script language="JavaScript">
<!--
 document.write(new Date());
// -->
</script>

de from
the

he <noscript> and </noscript> tags enclose an arbitrary block of HTML text that
not support JavaScript. These tags can be

mployed to let a user know that his browser cannot correctly display your pages that
ple:

<script language="JavaScript1.1">
 // Your JavaScript code here
</script>
noscript>
hr size="4">
h1>This Page Requires JavaScript 1.1</h1>
his page requires a browser that supports JavaScript 1.1.<p>
Your browser either does not support JavaScript, or it has JavaScript
support disabled. If you want to correctly view this page, please
upgrade your browser or enable JavaScript support.

This commenting technique has solved the problem of hiding our JavaScript co
browsers that can't run it. The next step in failing gracefully is to display a message to
user to let him know that the page cannot run.

20.3.2 <noscript>

T
should be displayed by any browser that does
e
require JavaScript. For exam

<
<
<
T

<hr size="4">
</noscript>

There is one problem with the <noscript> tag. It was introduced into HTML by
Netscape with the release of Netscape 3. Thus, it is not supported in Netscape 2. Since
Netscape 2 does not support <noscript> and </noscript>, it ignores the tags and
displays the text that appears between them, even though it does support scripting. In the
previous code, however, this works out to our advantage, because we've specified that the
code requires JavaScript 1.1 support.

Chapter 21. JavaScript Security
Because of the wide-open nature of the Internet, security is an important issue. This is
particularly true with the introduction of languages such as Java and JavaScript, because
they allow executable content to be embedded in otherwise static web pages. Since
loading a web page can cause arbitrary code to be executed on your computer, stringent
security precautions are required to prevent malicious code from doing any damage to
your data or your privacy. This chapter discusses Internet security issues related to
JavaScript. Note that this chapter does not cover any of the many other issues involved in
web security, such as the authentication and cryptographic technologies used to keep the
contents of web documents and HTML forms private while they traverse the Web.

es

er's data or plant viruses
on the user's system.

Similarly, client-side JavaScript has no networking primitives of any type. A JavaScript

other
machine. (This would be a particularly dangerous possibility if the JavaScript program

d then attempt to break into

lthough the core JavaScript language and the basic client-side object model lack the
 code requires, the situation is not
vaScript is used as a "script

ch as ActiveX controls in Internet Explorer and
lesystem and network capabilities,

and the fact that JavaScript programs can control them clouds the picture and raises
security concerns. This is particularly true with ActiveX controls, and Microsoft has at
times had to release security patches to prevent JavaScript code from exploiting the

t the

to be private.

21.1 JavaScript and Security
JavaScript's first line of defense against malicious code is that the language simply do
not support certain capabilities. For example, client-side JavaScript does not provide any
way to write or delete files or directories on the client computer. With no File object and
no file access functions, a JavaScript program cannot delete a us

program can load URLs and can send HTML form data to web servers, CGI scripts, and
email addresses, but it cannot establish a direct connection to any other hosts on the
network. This means, for example, that a JavaScript program cannot use a client's
machine as an attack platform from which to attempt to crack passwords on an

had been loaded from the Internet through a firewall and coul
the intranet protected by the firewall.)

A
filesystem and networking features that most malicious
quite as simple as it appears. In many web browsers, Ja
engine" for other software components, su
plugins in Netscape. These components may have fi

capabilities of scriptable ActiveX objects. We'll touch on this issue again briefly a
end of this chapter.

While this intentional lack of features in client-side JavaScript provides a basic level of
security against the most egregious attacks, other security issues remain. These are
primarily privacy issues -- JavaScript programs must not be allowed to export
information about the user of a browser when that information is supposed

When you browse the Web, one of the pieces of information you are by default
consenting to release about yourself is which web browser you use. As a standard part of

t
our

onnection, for example. Other information, however, should not be public: this
includes your email address, which should not be released unless you choose to do so by

er

Similarly, your browsing history (the record of which sites you've already visited) and the

others pay good money for so that they can target sales pitches to you more effectively.
You can be sure that if a web browser or JavaScript allowed this valuable private

s, and

k mail (spam) and the like. Another is a legitimate concern
about keeping secrets. We don't want a JavaScript program loaded from the Internet and

pany intranet behind the
ewall. The remainder of this chapter explains how JavaScript defends itself against

such abuses.

21.2 Restricted Features
As I've already mentioned, the first line of defense against malicious scripts in client-side
JavaScript is that the language simply omits certain capabilities. The second line of
defense is that JavaScript imposes restrictions on certain features that it does support. For
example, client-side JavaScript supports a close() method for the Window object, but
most (hopefully all) web-browser implementations restrict this method so that a script can
close only a window that was opened by a script from the same web server. In particular,
a script cannot close a window that the user opened; if it tries to do so, the user is
presented with a confirmation box asking if he really wants to close the window.

h

rity restrictions to go along with them.

the HTTP protocol, a string identifying your browser, its version, and its vendor is sen
with every request for a web page. This information is public, as is the IP address of y

ternet cIn

sending an email message or authorizing an automated email message to be sent und
your name.

contents of your bookmarks list should remain private. Your browsing history and
bookmarks say a lot about your interests; this is information that direct marketers and

information to be stolen, some people would steal it every time you visited their site
it would be on the market only seconds later. Most web users would be uncomfortable
knowing that any site they visited could find out that they were cat fanciers, for example,
who were also interested in women's footwear and the Sierra Club.

Even assuming that we have no embarrassing fetishes to hide, there are plenty of good
reasons to be concerned about data privacy. One such reason is a pragmatic concern
about receiving electronic jun

running in one web browser window to be able to start e
rowser windows that contain pages loaded from the com

xamining the contents of other
b
fir

The most important of these security restrictions is known as the same-origin policy and
is described in the next section. The following is a list of the other security restrictions
found in most implementations of client-side JavaScript. This is not a definitive list. Eac
browser may have a slightly different set of restrictions, and the proprietary features of
each browser may well have proprietary secu

• The History object was originally designed as an array of URLs that represented
ns of

d

uld
d

the user's

. This prevents malicious scripts from calling
 browsing window, thereby causing the

program to exit.
• A script cannot open a window that is smaller than 100 pixels on a side or cause a

window to be resized to smaller than 100 pixels on a side. Similarly, such a script
cannot move a window off the screen, or create a window that is larger than the
screen. This prevents scripts from opening windows that the user cannot see or
could easily overlook; such windows could contain scripts that keep running after
the user thinks they have stopped. Also, a script may not create a browser window
without a titlebar, because such a window could be made to spoof an operating-
system dialog box and trick the user into entering a sensitive password, for
example.

• A script may not cause a window or frame to display an about: URL, such as
about:cache, because these URLs can expose system information, such as the

 script cannot set any of the properties of an Event object. This prevents scripts
from spoofing events. A script cannot register event listeners within for or capture

ion.

w

l of the properties of the Document object. For all intents and purposes, you

the complete browsing history of the browser. Once the privacy implicatio
this became apparent, however, all access to the actual URLs was restricted, an
the History object was left with only its back(), forward(), and go()
methods to move the browser through the history array without revealing the
contents of the array.

• The value property of the FileUpload object cannot be set. If this property co
be set, a script could set it to any desired filename and cause the form to uploa
the contents of any specified file (such as a password file) to the server.

• A script cannot submit a form (using the submit() method of the Form object,
for example) to a mailto: or news: URL without the user's explicit approval
through a confirmation dialog box. Such a form submission would contain the
user's email address, which should not be made public without obtaining
permission.

• A JavaScript program cannot close a browser window without user confirmation
unless it opened the window itself
self.close() to close the user's

contents of the browser's cache.
• A

events for documents loaded from different sources than the script. This prevents
scripts from snooping on the user's input (such as the keystrokes that constitute a
password entry) to other pages.

21.3 The Same-Origin Policy
There is one far-reaching security restriction in JavaScript that deserves its own sect
This restriction is known as the same-origin policy: a script can read only the properties
of windows and documents that have the same origin (i.e., that were loaded from the
same host, through the same port, and by the same protocol) as the script itself.

The same-origin policy does not actually apply to all properties of all objects in a w
from a different origin. But it does apply to many of them, and in particular, it applies to
practically al

indo

should consider all predefined properties of all client-side objects with different origins

The same-origin policy is a fairly severe restriction, but it is necessary to prevent scripts
from stealing proprietary information. Without this restriction, an untrusted script
(perhaps a script loaded through a firewall into a browser on a secure corporate intranet)
in one window could use DOM methods to read the contents of documents in other
browser windows, which might contain private information.

Still, there are circumstances in which the same-origin policy is too restrictive. It poses
particular problems for large web sites that use more than one server. For example, a
script from home.netscape.com might legitimately want to read properties of a document
loaded from developer.netscape.com, or scripts from orders.acme.com might need to read
properties from documents on catalog.acme.com. To support large web sites of this sort,
JavaScript 1.1 introduced the domain property of the Document object. By default, the
domain property contains the hostname of the server from which the document was
loaded. You can set this property, but only to a string that is a valid domain suffix of
itself. Thus, if domain is originally the string "home.netscape.com", you can set it to the
string "netscape.com", but not to "home.netscape" or "cape.com", and certainly not to
"microsoft.com". (The domain value must have at least one dot in it; you cannot set it to
"com" or any other top-level domain.)

g

 Zo nd Signed Scripts
 policy is too

the interesting and useful things we
 too permissive, untrusted scripts

policy to be configured so
that trusted scripts are subject to fewer security restrictions than untrusted scripts. The
two major browser vendors, Microsoft and Netscape, have taken different approaches to
allowing configurable security; their approaches are briefly described in this section.

ts

nes.)

off-limits to your scripts. User-defined properties of objects with different origins may
also be restricted, although this may vary from implementation to implementation.

If two windows (or frames) contain scripts that set domain to the same value, the same-
origin policy is relaxed for these two windows and each of the windows may read
properties from the other. For example, cooperating scripts in documents loaded from
orders.acme.com and catalog.acme.com might set their document.domain properties to
"acme.com", thereby making the documents appear to have the same origin and enablin
each document to read properties of the other.

21.4 Security nes a
A one-size-fits-all security policy is never entirely satisfactory. If the
restrictive, trusted scripts don't have the ability to do
would like them to do. On the other hand, if the policy is
may cause havoc! The ideal solution is to allow the security

Internet Explorer defines "security zones" in which you can list web sites whose scrip
you trust and web sites whose scripts you do not trust. You can then configure the
security policies of these two zones separately, giving more privileges to and placing
fewer restrictions on the trusted sites. (You may also separately configure the privileges
of internet and intranet sites that are not explicitly listed in either of the other two zo

Unfortunately, this is not a complete or fine-grained solution for JavaScript security,
s that IE allows you to configure are not directly

related to JavaScript. In IE 6 beta, for example, you can specify whether scripts are

ng
d

ation.

s
" ty
policies and do it in a way that is cryptographically secure and theoretically very

nology, the process of

hnology has never really caught
on.

rson or
organization that wrote or otherwise takes respons a signed

curity restrictions described earlier, it first
s it to do so. When a script requests a privilege,

the browser defers to the user. The user is told who the signer of the script is and is asked
whether she wants to grant the requested privilege to a script written by that person or
organization. Once the user makes the decision, she can have the browser remember it so
that she doesn't get asked the same question in the future. In effect, this procedure allows
a user to configure a fine-grained customized security policy on the fly, as the need
arises.

ss of creating signed scripts is somewhat
 it is done have change between Netscape 4 and

re beyond the scope of this book, but you can learn more

because most of the security option

allowed to control ActiveX objects and Java applets, and whether they can perform paste
(as in cut-and-paste) operations. You are not given the option, for example, of disabli
the same-origin policy for a trusted site or of allowing scripts from trusted sites to sen
email messages without a user confirm

Netscape 4 and Netscape 6 implement configurable security with an approach known a
signed scripts." Signed scripts provide complete fine-grained configurability of securi

compelling. Unfortunately, since Microsoft has no compatible tech
creating signed scripts is cumbersome for script authors, and the use of signed scripts can
be confusing for end users, the use of this promising tec

Briefly, a signed script bears an unforgeable digital signature that specifies the pe
ibility for the script. When

script needs to circumvent one of the se
quests a special "privilege" that allowre

As I've already mentioned, the proce
mbersome. Also, the details of howcu

Netscape 6. Those details a
online at http://developer.netscape.com/docs/manuals/signedobj/trust/index.htm and
http://www.mozilla.org/projects/security/components/.

Chapter 22. Using Java with
JavaScript
As we discussed in Chapter 14, Netscape 3 and later and Internet Explorer 4 and later
both allow JavaScript programs to read and write the public fields and invoke the public
methods of Java applets embedded in HTML documents. Netscape supports JavaScript
interaction with Java applets through a technology known as LiveConnect. Internet
Explorer instead treats every Java object (including applets) as an ActiveX control and
uses its ActiveX scripting technology to allow JavaScript programs to interact with Java.
Because Netscape's technology is specifically designed for communication between
JavaScript and Java, it has some features that IE's ActiveX technology cannot provide. In
practice, however, the two technologies are fairly compatible. Although this chapter is
based on Netscape's LiveConnect, the key features it describes work in IE as well.[1]

[1] Note that Netscape 6 was released with poor support for LiveConnect but that it is fully implemented in Netscape 6.1 and later.

This chapter begins with a discussion of how you can use JavaScript to script Java
applets, how your Java applets can invoke JavaScript code, and how (in Netscape only)
you can use JavaScript to work directly with Java system classes. It then documents the
nitty-gritty details of how LiveConnect works. It assumes you have at least a basic
familiarity with Java programming (see Java in a Nutshell, by David Flanagan, and
Learning Java, by Patrick Niemeyer and Jonathan Knudsen, both published by O'Reilly).

22.1 Scripting Java Applets
As discussed in Chapter 14, all Java applets embedded in a web page become part of the
Document.applets[] array. Also, if given a name or id, an applet can be accessed

ple, the applet created by an
 be referred to as document.chart.

cript as if they were
the properties and methods of a JavaScript object. For example, if an applet named

var chartcolor = document.chart.lineColor; // Read an applet field
document.chart.lineColor = "#ff00ff"; // Set an applet field

JavaScript can even query and set the values of fields that are arrays. Suppose that the
chart applet defines two fields declared as follows (Java code):

public int numPoints;
public double[] points;

directly as a property of the Document object. For exam
<applet> tag with a name attribute of "chart" can

The public fields and methods of every applet are accessible to JavaS

"chart" defines a field named lineColor whose type is String, a JavaScript program can
query and set this field with code like this:

A JavaScript program might use these fields with code like this:

for(var i = 0; i < document.chart.numPoints; i++)
 document.chart.points[i] = i*i;

This example illustrates the tricky thing about connecting JavaScript and Java: type
conversion. Java is a strongly typed language with a fair number of distinct primitive

is converted to ber and various JavaScript
numbers are converted to Java double values. There is a lot of work going on behind the
scenes to ensure that these values are properly converted as needed. Later in this chapter,
we'll consider the topic of data type conversion in detail.

In addition to querying and setting the fields of a Java applet, JavaScript can also invoke
the methods of an applet. Suppose, for example, that the chart applet defines a method
named redraw(). This method takes no arguments and simply serves to notify the
applet that its points[] array has been modified and it should redraw itself. JavaScript
can invoke this method just as if it was a JavaScript method:

onverting JavaScript

public void setDomain(double xmin, double xmax);

document.chart.setDomain(0, 20);
document.ch
var label = document.chart.getXAxisLabel();

Finally, note that Java methods can return Java objects as their return values, and
JavaScript can read and write the public fields and invoke the public methods of these
objects as well. JavaScript can also use Java objects as arguments to Java methods.

uppose the Java applet defines a method named getXAxis() that returns a Java object
that is an instance of a class named Axis and a method named setYAxis() that takes an

has a method named
cript code like this:

types. JavaScript is loosely typed and has only a single numeric type. In the previous
example, a Java integer a JavaScript num

document.chart.redraw();

JavaScript can also call methods that take arguments and return values. The underlying
LiveConnect or ActiveX scripting technology does the work of c
argument values into legal Java values and converting Java return values into legal
JavaScript values. Suppose the chart applet defines Java methods like these:

public void setChartTitle(String title);
public String getXAxisLabel();

JavaScript can call these methods with code like this:

art.setChartTitle("y = x*x");

S

argument of the same type. Now, suppose further that Axis
setTitle(). We might use these methods with JavaS

var xaxis = document.chart.getXAxis(); // Get an Axis object
= xaxis.clone(); // Make a copy of it
itle("Y"); // Call a method of it...

document.chart.setYAxis(newyaxis); // and pass it to another
method

There is one complication when we use JavaScript to invoke the methods of a Java
object. Java allows two or more methods to have the same name, as long as they have
different argument types. For example, a Java object could declare these two methods:

public String convert(int i); // Convert an integer to a string
public String convert(double d); // Convert a floating-point number

JavaScript has only one numeric type and doesn't distinguish between integers and
floating-point values, so when you use JavaScript to pass a number to the method named
"convert", it cannot tell which one you intended to call. In practice, this problem doesn't
arise often, and it is usually possible to work around it by simply renaming the methods
as needed. The latest versions of LiveConnect (in Netscape 6.1 and later) also allow you
to disambiguate cases like this by including the argument types in the method name. For
example, if the two methods above were defined by document.applets[0], you could
disambiguate them like this:

var iconvert = document.applets[0]["convert(int)"]; // Get int method
iconvert(3); // Invoke the method like this

ava
 code, we now turn to the opposite
his control is accomplished

.1 The JSObject Class

All Java interactions with JavaScript are handled through an instance of the
netscape.javascript.JSObject class. An instance of this class is a wrapper around a single
JavaScript object. The class defines methods that allow you to read and write property
values and array elements of the JavaScript object and to invoke methods of the object.
Here is a synopsis of this class:

public final class JSObject extends Object {

var newyaxis
newyaxis.setT

22.2 Using JavaScript from J
Having explored how to control Java from JavaScript
problem: how to control JavaScript from Java code. T
primarily through the Java netscape.javascript.JSObject class, which represents a
JavaScript object within a Java program. The JavaScript-to-Java capabilities described in
the previous section typically work well in both Netscape and Internet Explorer. In
contrast, the Java-to-JavaScript techniques described here are not as robustly supported,
and you may well encounter bugs in both Netscape and IE.

22.2

 // Static method to obtain initial JSObject for applet's browser
window
 public static JSObject getWindow(java.applet.Applet applet);
 public Object getMember(String name); // Read
object property
 public Object getSlot(int index); // Read
array element
 public void setMember(String name, Object value); // Set
object property
 public void setSlot(int index, Object value); // Set
array element
 public void removeMember(String name); // Delete
property
 public Object call(String methodName, Object args[]); // Invoke
method
 public Object eval(String s); //
Evaluate string
 public String toString(); // Convert
to string
 protected void finalize();
}

Because all JavaScript objects appear in a hierarchy rooted in the current browser
window, JSObject objects must also appear in a hierarchy. To interact with any
JavaScript objects, a Java applet must first obtain a JSObject that represents the browser
window (or frame) in which the applet appears. The JSObject class does not define a
constructor method, so we cannot simply create an appropriate JSObject. Instead, we
must call the static getWindow() method. When passed a reference to an applet, this
method returns a JSObject that represents the browser window that contains the applet.
Thus, every applet that interacts with JavaScript includes a line that looks something like
this:

JSObject jsroot = JSObject.getWindow(this); // "this" is the applet
itself

Having obtained a JSObject that refers to the root window of the JavaScript object

.getWindow(this); // self
JSObject document = (JSObject) jsroot.getMember("document"); //
.document

hierarchy, you can use instance methods of the JSObject to read the values of properties
of the JavaScript object that it represents. Most of these properties have values that are
themselves JavaScript objects, so you can continue the process and read their properties
as well. The JSObject getMember() method returns the value of a named property,
while the getSlot() method returns the value of a numbered array element of the
specified JavaScript object. You might use these methods as follows:

import netscape.javascript.JSObject; // This must be at the top of the
file
 ...
JSObject jsroot = JSObject

JSObject applets = (JSObject) document.getMember("applets"); //
.applets
Applet applet0 = (Applet) applets.getSlot(0); //
[0]

You should note two things about this code fragment. First, getMember() and getSlot(
) both return a value of type "Object", which generally must be cast to some more
specific value, such as a JSObject. Second, the value read from slot 0 of the applets
array can be cast to an Applet, rather than a JSObject. This is because the elements of the
JavaScript applets[] array are JavaObject objects that represent Java Applet objects.
When Java reads a JavaScript JavaObject, it unwraps that object and returns the Java
object that it contains (in this case, an Applet). The data conversion that occurs through
the JSObject interface is documented later in this chapter.

The JSObject class also supports methods for setting properties and array elements of
JavaScript objects. setMember() and setSlot() are analogous to the getMember()
and getSlot() methods. These methods set the value of a named property or a
numbered array element to a specified value. Note, however, that the value to be set must
be a Java object. If you want to set a value of a primitive type, use the corresponding Java
wrapper class: use an Integer object instead of an int value, for example. Finally, the
removeMember() method allows you to delete the value of a named property from a
JavaScript object.

In addition to reading and writing properties and array elements from JavaScript objects,
the JSObject class allows you to invoke methods of JavaScript objects. The JSObject
call() method invokes a named method of the specified JavaScript object and passes a
specified array of Java objects as arguments to that method. As we saw when setting

 a

me)

 JSObject win = JSObject.getWindow(this);
 return (JSObject) win.call("open", args);

orks
s

JavaScript code. You'll find that using eval() is often much easier than using the
various other methods of the JSObject class. Since all the code is passed as a string, you
can use string representations of the data types you want -- you do not have to convert
Java primitive types to their corresponding object types. For example, compare the
following two lines of code that set properties of the main browser window:

JavaScript properties, it is not possible to pass primitive Java values as arguments to
JavaScript method; instead you must use the corresponding Java object types. For
example, you might use the call() method in Java code like the following to open a
new browser window:

public JSObject newwin(String url, String window_na
{
 Object[] args = { url, window_name };

}

The JSObject class has one more important method: eval(). This Java method w
ust like the JavaScript function of the same name -- it executes a string that containj

jsroot.setMember("i", new Integer(0));
jsroot.eval("self.i = 0");

The second line is obviously easier to understand. As another example, consider the
frame being displayed in the browser

window:

JSObject jsroot = JSObject.getWindow(this);
JSObject parent = (JSObject) jsroot.getMember("parent");
JSObject frames = (JSObject) parent.getMember("frames");
JSObject frame1 = (JSObject) frames.getSlot(1);
JSObject document = (JSObject) frame1.getMember("document");
Object[] args = { "Hello from Java!" };
document.call("write", args);

following use of eval() to write a particular

JSObject jsroot = JSObject.getWindow(this);
jsroot.eval("parent.frames[1].document.write('Hello from Java!')");

To do the equivalent without the eval() method is a lot harder:

22.2.2 Using JSObjects in Applets

Example 22-1 shows the init() method of an applet that uses LiveConnect to interact
with JavaScript.

public void init()
{
 // Get the JSObject representing the applet's browser window.
 JSObject win = JSObject.getWindow(this);

 // Run JavaScript with eval(). Careful with those nested quotes!
 win.eval("alert('The CPUHog applet is now running on your computer.
" +
 "You may find that your system slows down a bit.');");
}

In order to use any applet, you must compile it and then embed it in an HTML file. When
the applet interacts with JavaScript, special instructions are required for both of these

22.2.2.1 Compiling applets that use the JSObject class

Example 22-1. Using JavaScript from an applet method
import netscape.javascript.*

steps.

Any applet that interacts with JavaScript uses the netscape.javascript.JSObject class. To
compile such an applet, therefore, your Java compiler must know where to find a
definition of this class. Because the class is defined and shipped by Netscape and not by
Sun, the javac compiler from Sun does not know about it. This section explains how to
enable your compiler to find this required class. If you are not using the JDK from Sun,
you may have to do something a little different -- see the documentation from the vendor
of your Java compiler or Java development environment.

To tell the JDK compiler where to find classes, you set the CLASSPATH environment
variable. This environment variable specifies a list of directories and JAR files (or ZIP
files) that the compiler should search for class definitions (in addition to its standard

 JAR file on your system
h ss. In Netscape 6.1, the file is
plugins/java2/javaplugin.jar, under the Netscape installation directory. In Netscape 4, the

For Internet Explorer, the class definition you need is usually in one of the ZIP files in
is that this directory contains a bunch of ZIP

 release to release! The largest of
the files is typically the one you need. You can use an unzip utility to verify that it

Once you have found the JAR or ZIP file you need, you can tell the compiler about it by
TH environment variable. For a Unix system, set a path like this:

gins/java2/javaplugin.jar

And for a Windows system, set a path like this:

set CLASSPATH=.;C:\Windows\Java\Packages\5fpnnz7t.zip

With CLASSPATH set, you should be able to compile your applet with javac as you would
normally.

o.

directory of system classes). The trick is to figure out which
olds the definition of the netscape.javascript.JSObject cla

file is java/classes/java40.jar, under the installation directory. For Netscape 4 on a
Windows system, for example, you would probably find java40.jar at C:\Program
Files\Netscape\Communicator\Program\ Java\Classes\ java40.jar.

c:\Windows\ Java\Packages. The trouble
les, all of whose names are gibberish and change fromfi

contains the file netscape/javascript/JSObject.class.

setting the CLASSPA

setenv CLASSPATH .:/usr/local/netscape/plu

22.2.2.2 The mayscript attribute

There is an additional requirement for running an applet that interacts with JavaScript. As
a security precaution, an applet is not allowed to use JavaScript unless the web page
author (who may not be the applet author) explicitly gives the applet permission to do s
To give this permission, you must include the new mayscript attribute in the applet's
<applet> tag in the HTML file.

Example 22-1 showed a fragment of an applet that used JavaScript to display an alert
ialog box. Once you have successfully compiled this applet, you might include it in an

HTML file as follows:

If you do not remember to include the mayscript attribute, the applet is not allowed to
use the JSObject class.

22.3 Using Java Classes Directly
As described in the previous two sections, both Netscape and Internet Explorer allow
JavaScript code to interact with Java applets and Java applets to interact with JavaScript.
Netscape's LiveConnect technology also allows JavaScript programs to instantiate their
own Java objects and use them, even in the absence of any applets. Internet Explorer does
not have any analogous capability.

In Netscape, the object provides access to all the Java packages that Netscape
.java.lang refers to the java.lang package, and

the expression Packages.java.lang.System refers to the java.lang.System class. For
ight

 LiveConnect allows us
lasses (just as we

d

<applet code="CPUHog.class" width="300" height="300"
mayscript></applet>

Packages
knows about. The expression Packages

convenience, java is a shortcut for Packages.java. In Netscape, JavaScript code m
invoke a static method of this java.lang.System class as follows:

// Invoke the static Java method System.getProperty()
var javaVersion = java.lang.System.getProperty("java.version");

This use of LiveConnect is not limited to system classes, because
to use the JavaScript new operator to create new instances of Java c

ould in Java). w Example 22-2 shows JavaScript code that uses standard Java classes (the
JavaScript code looks almost identical to Java code, in fact) to pop up a window and

 is shown in Figure 22-1display some text. The result .

Figure 22-1. A Java window created from JavaScript

Example 22-2. Scripting the built-in Java classes
var f = new java.awt.Frame("Hello World");
var ta = new java.awt.TextArea("hello, world", 5, 20);

f.add("Center", ta);
f.pack();
f.show();

The code in Example 22-2 creates a simple Java user interface. What is missing,
however, is any form of event handling or user interaction. A program like the one shown
here is restricted to doing output, since it doesn't include any way for JavaScript to be
notified when the user interacts with the Java window. It is possible, though complicated,
to use JavaScript to define a Java user interface that responds to events. In Java 1.1 and
later, notification of an event is performed by invoking a method of an EventListener
object. Since Java applets can execute arbitrary strings of JavaScript code, it is possible to

uch EventListener objects, you
can
Jav

iveConnect does not give complet ;
 other words, there are some things we cannot do with LiveConnect. For example,

Liv m
wit

define a Java class that implements the appropriate EventListener interface and invokes a
specified string of JavaScript code when it is notified that an event has occurred. If you
create an applet with a method that allows you to create s

 use JavaScript to piece together Java GUIs that include event handlers defined in
aScript.

Note that L
in

e and unrestricted access to the Java system

eConnect does not give us the capability to define new Java classes or subclasses fro
hin JavaScript, nor does it give us the ability to create Java arrays.[2] In addition to

ava classthese limitations, access to the standard J es is restricted for security reasons. An
untrusted JavaScript program cannot use the java.io.File class, for example, because that
would give it the power to read, write, and delete files on the host system. Untrusted
JavaScript code can use Java only in the ways that untrusted applets can.

[2] JavaScript programs can create arrays indirectly, using the Java 1.1 method
java.lang.reflect.Array.newInstance().

22.4 LiveConnect Data Types
To understand how LiveConnect does its job of connecting JavaScript to Java, you have
to understand the JavaScript data types that LiveConnect uses. The following sections
explain these JavaScript data types. Although Internet Explorer uses a different
technology, an understanding of how LiveConnect works will also help you understand
the workings of IE. Some of the LiveConnect data types described here have analogs in
IE.

22.4.1 The JavaPackage Class

A package in Java is collection of related Java classes. The JavaPackage class is a
JavaScript data type that represents a Java package. The properties of a JavaPackage are
the classes that the package contains (classes are represented by the JavaClass class,
which we'll see shortly), as well as any other packages that the package contains. There is
a restriction on the JavaPackage class: you cannot use a JavaScript for/in loop to obtain

a complete list of all packages and classes that a JavaPackage contains. This restriction is
the result of an underlying restriction in the Java virtual machine.

All JavaPackage objects are contained within a parent JavaPackage; the Window
property named Packages is a top-level JavaPackage that serves as the root of this
package hierarchy. It has properties such as java, sun, and netscape, which are
JavaPackage objects that represent the various hierarchies of Java classes that are
available to the browser. For example, the JavaPackage Packages.java contains the
JavaPackage Packages.java.awt. For convenience, every Window object also has
java, sun, and netscape properties that are shortcuts to Packages.java,
Packages.sun, and Packages.netscape. Thus, instead of typing Packages.java.awt,
you can simply type java.awt.

To continue with the example, java.awt is a JavaPackage object that contains JavaClass
objects such as java.awt.Button, which represents the java.awt.Button class. But it also
contains yet another JavaPackage object, java.awt.image, which represents the
java.awt.image package in Java.

As you can see, the property naming scheme for the JavaPackage hierarchy mirrors the
naming scheme for Java packages. Note, however, that there is one big difference
between the JavaPackage class and the actual Java packages that it represents. Packages
in Java are collections of classes, not collections of other packages. That is, java.lang is
the name of a Java package, but java is not. So the JavaPackage object named java does
not actually represent a package in Java -- it is simply a convenient placeholder in the
package hierarchy for other JavaPackage objects that do represent real Java packages.

On most systems, Java classes are installed in files in a directory hierarchy that
corresponds to their package names. For example, the java.lang.String class is stored in
the file java/lang/String.class. Actually, this file is usually contained in a ZIP file, but the
directory hierarchy is still there, encoded within the archive. Therefore, instead of
thinking of a JavaPackage object as representing a Java package, you may find it clearer
to think of it as representing a directory or subdirectory in the directory hierarchy of Java
classes.

The JavaPackage class has a few shortcomings. There is no way for LiveConnect to tell
in advance whether a property of a JavaPackage refers to a Java class or to another Java
package, so JavaScript assumes that it is a class and tries to load a class. Thus, when you
use an expression like java.awt, LiveConnect first looks for a class file java/awt.class. It
may even search for this class over the network, causing the web server to log a "404 File
Not Found" error. If LiveConnect does not find a class, it assumes that the property refers
to a package, but it has no way to ascertain that the package actually exists and has real
classes in it. This causes the second shortcoming: if you misspell a class name,
LiveConnect happily treats it as a package name, rather than telling you that the class you
are trying to use does not exist.

22.4.2

The Jav lass
object does not have any properties of its own -- all of its properties represent (and have
the same name as) the public static fields and methods of the represented Java class.
These public static fields and methods are sometimes called class fields and class
methods, to indicate that they are associated with a class rather than an object instance.
Unlike the JavaPackage class, JavaClass does allow the use of the for/in loop to
enumerate its properties. Note that JavaClass objects do not have properties representing
the instance fields and methods of a Java class -- individual instances of a Java class are
represented by the JavaObject class, which is documented in the next section.

As we saw earlier, JavaClass objects are contained in JavaPackage objects. For example,
java.l
is a Jav object,
in t ,
java.lang.System class. You can use JavaScript to refer to any of the standard Java system
classes in this same way. The java.lang.Double class is named java.lang.Double (or
Packages.java.lang.Double), for example, and the java.awt.Button class is
java.awt.Button.

Another way to obtain a JavaClass object in JavaScript is to use the getClass()
function. Given any JavaObject object, you can obtain a JavaClass object that represents
the class of that Java object by passing the JavaObject to getClass().[3]

 The JavaClass Class

aClass class is a JavaScript data type that represents a Java class. A JavaC

ang is a JavaPackage that contains a System property. Thus, java.lang.System
aClass object, representing the Java class java.lang.System. This JavaClass

urn has properties such as out and in that represent static fields of the

[3] Don't confuse the JavaScript getClass() function, which returns a JavaClass object, with the Java getClass() method,
which returns a java.lang.Class object.

Once you have a JavaClass object, there are several things you can do with it. The
JavaClass class implements the LiveConnect functionality that allows JavaScript
programs to read and write the public static fields of Java classes and invoke the public
static methods of Java classes. For example, java.lang.System is a JavaClass. We can
read the value of a static field of java.lang.System like this:

var java_version = java.lang.System.getProperty("java.version");

Recall that Java is a typed language -- all fields and method arguments have types. If you
attempt to set a field or pass an argument of the wrong type, an exception is thrown. (Or,
in versions of JavaScript prior to 1.5, a JavaScript error occurs.)

var java_console = java.lang.System.out;

Similarly, we might invoke a static method of java.lang.System with a line like this
one:

There is one more important feature of the JavaClass class. You can use JavaClass
objects with the JavaScript new operator to create new instances of Java classes -- i.e., to
create JavaObject objects. The syntax for doing so is just as it is in JavaScript (and just as
it is in Java):

var d = new java.lang.Double(1.23);

Finally, having created a JavaObject in this way, we can return to the getClass()
function and show an example of its use:

var d = new java.lang.Double(1.23); // Create a JavaObject
Obtain the JavaClass of the

JavaObject

ass()
 applet instance.

 Double = java.lang.Double;

This mimics the Java import statement and can improve the efficiency of your program,
since LiveConnect does not have to look up the lang property of java and the Double
property of java.lang.

22.4.3 The JavaObject Class

The JavaObject class is a JavaScript data type that represents a Java object. The
JavaObject class is, in many ways, analogous to the JavaClass class. As with JavaClass, a
JavaObject has no properties of its own -- all of its properties represent (and have the
same names as) the public instance fields and public instance methods of the Java object
it represents. As with JavaClass, you can use a JavaScript for/in loop to enumerate all
the properties of a JavaObject object. The JavaObject class implements the LiveConnect
functionality that allows us to read and write the public instance fields and invoke the
public methods of a Java object.

For example, if d is a JavaObject that represents an instance of the java.lang.Double
class, we can invoke a method of that Java object with JavaScript code like this:

n = d.doubleValue();

var d_class = getClass(d); //

if (d_class == java.lang.Double) ...; // This comparison will be true

When working with standard system classes like this, you can typically use the name of
the system class directly rather than calling getClass(). The getCl function is
more useful in obtaining the class of a non-system object, such as an

Instead of referring to a JavaClass with a cumbersome expression like
java.lang.Double, you can define a variable that serves as a shortcut:

var

Similarly, we saw earlier that the java.lang.System class has a static field out. This field
refers to a Java object of class java.io.PrintStream. In JavaScript, we can refer to the
corresponding JavaObject as:

java.l

and we can invoke a method of this object like this:[4]

ang.System.out

[4] The output of this line of code doesn't appear in the web browser itself, but rather in the Java Console. In Netscape 6, select Tasks

Tools Java Console to see this window.

java.lang.System.out.println("Hello world!");

A JavaObject object also allows us to read and write the public instance fields of the Java
object it represents. Neither the java.lang.Double class nor the java.io.PrintStream class
used in the preceding examples has any public instance fields, however. But suppose we
use JavaScript to create an instance of the java.awt.Rectangle class:

r = new java.awt.Rectangle();

Then we can read and write its public instance fields with JavaScript code like the
following:

r.x = r.y = 0;

t were a
tion is required, however: r is a JavaObject and does not

behave identically to regular JavaScript objects. The differences will be detailed later.
Also, remember that unlike JavaScript, the fields of Java objects and the arguments of

es, you

e saw earlier in this chapter, if a
t has two methods named "convert", the convert
ose methods. In recent versions of LiveConnect,

however, o also defines properties that include the argument types, and you can specify

var iconvert = o["convert(int)"]; // Get the method we want

r.width = 4;
r.height = 5;
var perimeter = 2*r.width + 2*r.height;

The beauty of LiveConnect is that it allows a Java object, r, to be used just as if i
JavaScript object. Some cau

their methods are typed. If you do not specify JavaScript values of the correct typ
cause JavaScript errors or exceptions.

In Netscape 6.1 and later the JavaObject class makes methods available by name and by
name plus argument type, which is useful when there are two or methods that share the
same name but expect different types of arguments. As w
JavaObject o represents an object tha

roperty of o may refer to either of thp

which version of the method you want by including this type information:

iconvert(3); // Invoke it

Because the name of the property includes parentheses, you can't use the regular "."
notation to access it and must express it as a string within square brackets. The JavaClass
type has the same capability for overridden static methods.

22.4.4 The JavaArray Class

nect
lity that allows JavaScript to read the elements of Java arrays. Like JavaScript

), a JavaArray object has a length property that specifies the
umber of elements it contains. The elements of a JavaArray object are read with the

r/in
ays of

ust as in JavaScript or Java.

For example, suppose we create an instance of the java.awt.Polygon class:

p = new java.awt.Polygon();

The JavaObject p has properties xpoints and ypoints that are JavaArray objects
representing Java arrays of integers. (To learn the names and types of these properties,
look up the documentation for java.awt.Polygon in a Java reference manual.) We can use
these JavaArray objects to randomly initialize the Java polygon with code like this:

for(var i = 0; i < p.xpoints.length; i++)
 p.xpoints[i] = Math.round(Math.random()*100);
for(var i = 0; i < p.ypoints.length; i++)
 p.ypoints[i] = Math.round(Math.random()*100);

22.4.5 Java Methods

The JavaClass and JavaObject classes allow us to invoke static methods and instance
methods, respectively. In Netscape 3, Java methods were internally represented by a
JavaMethod object. In Netscape 4, however, Java methods are simply native methods,
like the methods of built-in JavaScript objects such as String and Date.

When you're using Java methods, remember that they expect a fixed number of
arguments of fixed types. If you pass the wrong number of arguments, or an argument of
the wrong type, you cause a JavaScript error.

22.5 LiveConnect Data Conversion

The final LiveConnect data type for JavaScript is the JavaArray class. As you might
expect by now, instances of this class represent Java arrays and provide the LiveCon
functiona
arrays (and like Java arrays
n
standard JavaScript [] array index operator. They can also be enumerated with a fo
loop. You can use JavaArray objects to access multidimensional arrays (actually arr
arrays), j

Java is a strongly typed language with a relatively large number of data types, while
JavaScript is an untyped language with a relatively small number of types. Because of
this major structural difference between the two languages, one of the central
responsibilities of LiveConnect is data conversion. When JavaScript sets a Java class or
instance field or passes an argument to a Java method, a JavaScript value must be
converted to an equivalent Java value, and when JavaScript reads a Java class or instance
field or obtains the return value of a Java method, that Java value must be converted into
a compatible JavaScript value.[5]

[5] In addition, data conversion must happen when Java reads or writes a JavaScript field or invokes a JavaScript method. These conversions are
ne differently, however, and are described later in this chapter, when we discuss how to use JavaScript from Java. For now, we're

dering only the data conversion that happens when JavaScript code interacts with Java, not the other way around.

igure 22-2

do
consi

F and Figure 22-3 illustrate how data conversion is performed when JavaScript
writes Java values and when it reads them, respectively.

Figure 22-2. Data conversions performed when JavaScript writes Java
values

Figure 22-3. Data conversions performed when JavaScript reads Jav
values

a

Notice the following points about the data conversions illustrated in Figure 22-2:

• Figure 22-2 does not show all possible conversions between JavaScript types and
Java types. This is because JavaScript-to-JavaScript type conversions can occur
before the JavaScript-to-Java conversion takes place. For example, if you pass a
JavaScript number to a Java method that expects a java.lang.String argument,
JavaScript first converts that number to a JavaScript string, which can then be
converted to a Java string.

• A JavaScript number can be converted to any of the primitive Java numeric types.
The actual conversion performed depends, of course, on the type of the Java field
being set or the method argument being passed. Note that you can lose precision
doing this, for example, when you pass a large number to a Java field of type
short or when you pass a floating-point value to a Java integral type.

• A JavaScript number can also be converted to an instance of the Java class
java.lang.Double but not to an instance of a related class, such as
java.lang.Integer or java.lang.Float.

• JavaScript does not have any representation for character data, so a JavaScript
number may also be converted to the Java primitive char type.

• A JavaObject in JavaScript is "unwrapped" when passed to Java -- that is, it is
converted to the Java object it represents. Note, however, that JavaClass objects in
JavaScript are not converted to instances of java.lang.Class, as might be
expected.

• JavaScript arrays are not converted to Java arrays.

lso notice these points about the conversions illustrated in Figure 22-3A :

• Since JavaScript does not have a type for character data, the Java primitive char
type is converted to a JavaScript number, not a string, as might be expected.

• A Java instance of java.lang.Double, java.lang.Integer, or a similar class is not
converted to a JavaScript number. Like any Java object, it is converted to a
JavaObject object in JavaScript.

• A Java string is an instance of java.lang.String, so like any other Java object, it is
converted to a JavaObject object rather than to an actual JavaScript string.

• Any type of Java array is converted to a JavaArray object in JavaScript.

22.5.1 Wrapper Objects

Another important concept that you must grasp in order to fully understand Figure 22-2
and Figure 22-3 is the idea of wrapper objects. While conversions between most
JavaScript and Java primitive types are possible, conversions between object types are
generally not possible. This is why LiveConnect defines the JavaObject object in
JavaScript -- it represents a Java object that cannot be directly converted to a JavaScript
object. In a sense, a JavaObject is a JavaScript wrapper around a Java object. When
JavaScript reads a Java value (a field or the return value of a method), any Java objects
are wrapped and JavaScript sees a JavaObject.

A similar thing happens when JavaScript writes a JavaScript object into a Java field or
passes a JavaScript object to a Java method. There is no way to convert the JavaScript
object to a Java object, so the object gets wrapped. The Java wrapper for a JavaScript
object is the Java class netscape.javascript.JSObject.

Things get interesting when these wrapper objects are passed back. If JavaScript writes a
JavaObject into a Java field or passes it to a Java method, LiveConnect first unwraps the
object, converting the JavaObject back into the Java object that it represents. Similarly, if
JavaScript reads a Java field or gets the return value of a Java method that is an instance
of netscape.javascript.JSObject, that JSObject is also unwrapped to reveal and return the
original JavaScript object.

22.5.2 LiveConnect Data Conversion in Netscape 3

In Netscape 3, there was a bug in the way that LiveConnect converted Java values to
JavaScript values: the value of a primitive field of a Java object was incorrectly returned
as a JavaScript object, rather than as a JavaScript primitive value. For example, if
JavaScript read the value of a field of type int, LiveConnect in Netscape 3 converted that

value to a Number object, rather than to a primitive numeric value. Similarly,
LiveConnect converted the value of Java TbooleanT fields to JavaScript Boolean objects,
rather than primitive JavaScript boolean values. Note that this bug occurred only when
querying the values of Java fields. It did not occur when LiveConnect converted the
return value of a Java method.

Number and Boolean objects in JavaScript behave almost, but not exactly, the same as
primitive number and boolean values. One important difference is that Number objects,
like all JavaScript objects, use the T+T operator for string concatenation rather than for
addition. As a result, code like the following that uses LiveConnect in Netscape 3 can
yield unexpected results:

var r = new java.awt.Rectangle(0,0,5,5);
var w = r.width; // This is a Number object, not a primitive number.
var new_w = w + 1; // Oops! new_w is now "51", not 6, as expected.

To work around this problem, you can explicitly call the TvalueOf()T method to convert
a Number object to its corresponding numeric value. For example:

var r = new java.awt.Rectangle(0,0,5,5);
var w = r.width.valueOf(); // Now we've got a primitive number.
var new_w = w + 1; // This time, new_w is 6, as desired.

22.6 JavaScript Conversion of JavaObjects
Having worked your way through the previous dense section, you may hope that we are
done with the topic of data conversion. Unfortunately, there is more to be discussed on
the topic of how JavaScript converts JavaObject objects to various JavaScript primitive
types. Notice in TUFigure 22-3UT that quite a few Java data types, including Java strings
(instances of Tjava.lang.StringT), are converted to JavaObject objects in JavaScript rather
than being converted to actual JavaScript primitive types, such as strings. This means that
when you use LiveConnect, you'll often be working with JavaObject objects.

Refer back to TUTable 11-1UT, which shows how various JavaScript data types are converted
when used in various contexts. For example, when a number is used in a string context, it
is converted to a string, and when an object is used in a boolean context, it is converted to
the value TfalseT if it is TnullT and TtrueT otherwise. These conversion rules don't apply to
JavaObject objects, which are converted using their own rules, as follows:

• When a JavaObject is used in a numeric context, it is converted to a number by
invoking the TdoubleValue() T method of the Java object it represents. If the Java
object does not define this method, a JavaScript error occurs.

• When a JavaObject is used in a boolean context, it is converted to a boolean value
by invoking the TbooleanValue() T method of the Java object it represents. If the
Java object does not define this method, a JavaScript error occurs.

• When a JavaObject is used in a string context, it is converted to a string value by
invoking the TtoString()T method of the Java object it represents. All Java
objects define or inherit this method, so this conversion always succeeds.

• When a JavaObject is used in an object context, no conversion is necessary, since
it is already a JavaScript object.

Because of these different conversion rules, and for other reasons as well, JavaObject
objects behave differently than other JavaScript objects, and there are some common
pitfalls that you need to recognize. First, it is not uncommon to work with a JavaObject
that represents an instance of Tjava.lang.Double T or some other numeric object. In many
ways, such a JavaObject behaves like a primitive number value, but be careful when
using the T+T operator. When you use a JavaObject (or any JavaScript object) with T+T, you
are specifying a string context, so the object is converted to a string for string
concatenation instead of being converted to a number for addition.

When you want to explicitly convert a JavaScript object to a primitive value, you usually
call its TvalueOf()T method. Note that this does not work with JavaObject objects. As we
discussed earlier, the JavaObject class defines no properties of its own; all of its
properties represent fields and methods of the Java object it represents. This means that
JavaObject objects don't support common JavaScript methods, such as TvalueOf()T. In
the case of our JavaObject-wrapped Tjava.lang.Double T object, you should call the Java
TdoubleValue() T method when you need to force the object into a primitive value.

Another difference between JavaObject objects and other JavaScript data types is that
JavaObjects can be used in a boolean context only if they define a TbooleanValue() T
method. Suppose TbuttonT is a JavaScript variable that may contain TnullT or may hold a
JavaObject that represents an instance of the Tjava.awt.ButtonT class. If you want to check
whether the variable contains TnullT, you might write code like this, out of habit:

if (!button) { ... }

If TbuttonT is TnullT, this works fine. But if TbuttonT actually contains a JavaObject
representing a Tjava.awt.ButtonT instance, LiveConnect tries to invoke the TbooleanValue(
)T method. When it discovers that the Tjava.awt.ButtonT class doesn't define one, it causes a
JavaScript error. The workaround in this case is to be explicit about what you are testing
for, to avoid using the JavaObject in a boolean context:

if (button != null) { ... }

This is a good habit to get into, in any case, since it makes your code easier to read and
understand.

22.7 Java-to-JavaScript Data Conversion
In the last two sections, we discussed the rules by which values are converted when
JavaScript reads and writes Java fields and invokes Java methods. Those rules explained
how the JavaScript JavaObject, JavaArray, and JavaClass objects convert data; they
apply only to the case of JavaScript manipulating Java. When Java manipulates
JavaScript, the conversion is performed by the Java JSObject class, and the conversion
rules are different. TUFigure 22-4 UT and TUFigure 22-5UT illustrate these conversions.

Figure 22-4. Data conversions performed when Java writes JavaScript
values

Figure 22-5. Data conversions performed when Java reads JavaScript
values

The point to remember when studying these figures is that Java can interact with
JavaScript only through the API provided by the JSObject class. Because Java is a
strongly typed language, the methods defined by this class can work only with Java
objects, not with primitive values. For example, when you read the value of a JavaScript
number, the TgetMember()T method returns a Tjava.lang.Double T object, rather than a
primitive TdoubleT value.

When writing JavaScript functions that are invoked from Java, bear in mind that the
arguments passed by Java are either JavaScript objects from unwrapped Java JSObjects,
or JavaObjects. LiveConnect simply does not allow Java to pass primitive values as
method arguments. As we saw earlier in this chapter, JavaObject objects behave
somewhat differently than other objects. For example, an instance of Tjava.lang.DoubleT
behaves differently than a primitive JavaScript number or even a JavaScript Number
object. The same caution applies when you are working with JavaScript properties that
have their values set by Java.

One way to avoid the whole issue of data conversion is to use the Teval()T method of the
JSObject class whenever your Java code wants to communicate with JavaScript. In order
to do this, your Java code must convert all method arguments or property values to string
form. Then, the string to be evaluated can be passed unchanged to JavaScript, which can
convert the string form of the data to the appropriate JavaScript data values.

Part III: Core JavaScript Reference

This part of the book is a complete reference to all of the objects, properties, functions,
methods, and event handlers in the core JavaScript language. The first few pages of this
part explain how to use this reference material.

NOTE:
Since this E-Book was Ripped, Every page of
text was high-lighted, copied, and pasted into a
word document. Then converted to PDF.

The reference is an extra 450 pages, and TONS
of time would be required…. So (since I have a
life) I will UNOT U be ripping this section of the
book.

Sorry… the book ends here, a very successful
459 pages, enjoy, you can learn everything you
need to know about JavaScript…

 lilmeanman -- TUwww.magic-html.comUT –
TUwww.suprnova.orgUT –
TUwww.torrentbox.comUT –

TUwww.malinko.netUT –
TUwww.warezfreaks.comUT –
TUwww.emudimension.comUT

		2004-08-31T17:19:43-0600
	Lilmeanman
	I attest to the accuracy and integrity of this document

